

A140633


Primes of the form 7x^2+4xy+52y^2.


69



7, 103, 127, 223, 367, 463, 487, 607, 727, 823, 967, 1063, 1087, 1303, 1327, 1423, 1447, 1543, 1567, 1663, 1783, 2143, 2287, 2383, 2503, 2647, 2767, 2887, 3343, 3463, 3583, 3607, 3727, 3823, 3847, 3943, 3967, 4327, 4423, 4447, 4567, 4663
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Discriminant=1440. Also primes of the forms 7x^2+6xy+87y^2 and 7x^2+2xy+103y^2.
Voight proves that there are exactly 69 equivalence classes of positive definite binary quadratic forms that represent almost the same primes. 48 of those quadratic forms are of the idoneal type discussed in A139827. The remaining 21 begin at A140613 and end here. The crossreferences section lists the quadratic forms in the same order as tables 16 in Voight's paper. Note that A107169 and A139831 are in the same equivalence class.
In base 12, the sequence is 7, 87, X7, 167, 267, 327, 347, 427, 507, 587, 687, 747, 767, 907, 927, 9X7, X07, X87, XX7, E67, 1047, 12X7, 13X7, 1467, 1547, 1647, 1727, 1807, 1E27, 2007, 20X7, 2107, 21X7, 2267, 2287, 2347, 2367, 2607, 2687, 26X7, 2787, 2847, where X is for 10 and E is for 11. Moreover, the discriminant is X00 and that all elements are {7, 87, X7, 167, 187, 247} mod 260.  Walter Kehowski, May 31 2008


LINKS

Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
John Voight, Quadratic forms that represent almost the same primes, Math. Comp., Vol. 76 (2007), pp. 15891617.


MATHEMATICA

Union[QuadPrimes2[7, 4, 52, 10000], QuadPrimes2[7, 4, 52, 10000]] (* see A106856 *)


CROSSREFS

Cf. A033205, A007519, A068228, A107135, A107144, A107152, A107151.
Cf. A107181, A139502, A139856, A139854, A139874, A139877, A139897.
Cf. A140613, A140614. A140615, A139923, A140616A140619, A139988.
Cf. A139993, A140008, A140010, A140620A140632, A033212, A102273.
Cf. A107007, A107003, A139830, A107169, A139831, A141373, A139847.
Cf. A139850, A139855, A139860, A139879, A139880, A139924, A139990.
Cf. A139998, A139992, A139996, A140003, A140013, A107006, A139858.
Cf. A107008, A140633, A139991, A139857, A139859, A139878, A007645, A002313.
Sequence in context: A020477 A203356 A223239 * A142400 A032460 A267234
Adjacent sequences: A140630 A140631 A140632 * A140634 A140635 A140636


KEYWORD

nonn,easy


AUTHOR

T. D. Noe, May 19 2008


STATUS

approved



