login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A107181 Primes of the form 8x^2 + 9y^2. 8
17, 41, 89, 113, 137, 233, 257, 281, 353, 401, 449, 521, 569, 593, 617, 641, 761, 809, 857, 881, 929, 953, 977, 1049, 1097, 1193, 1217, 1289, 1361, 1409, 1433, 1481, 1553, 1601, 1697, 1721, 1889, 1913, 2081, 2129, 2153, 2273, 2297, 2393, 2417 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Discriminant = -288. See A107132 for more information.

Also primes of the form 9x^2 + 6xy + 17y^2. See A140633. - T. D. Noe, May 19 2008

All terms are of the form x^2 + y^2, see A002144. - Zak Seidov, Jan 26 2014

LINKS

Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]

N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)

FORMULA

The primes are congruent to 17 (mod 24). - T. D. Noe, May 02 2008

MATHEMATICA

QuadPrimes2[8, 0, 9, 10000] (* see A106856 *)

PROG

(MAGMA) [ p: p in PrimesUpTo(5000) | p mod 24 eq 17 ]; // Vincenzo Librandi, Apr 19 2011

(PARI) list(lim)=my(v=List()); forprime(p=17, lim, if(p%24==17, listput(v, p))); Vec(v) \\ Charles R Greathouse IV, Feb 10 2017

CROSSREFS

Subsequence of A002144 (Pythagorean primes).

Cf. A139827.

Sequence in context: A235743 A299797 A087877 * A158014 A139879 A281792

Adjacent sequences:  A107178 A107179 A107180 * A107182 A107183 A107184

KEYWORD

nonn,easy

AUTHOR

T. D. Noe, May 13 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 23 13:40 EST 2020. Contains 331171 sequences. (Running on oeis4.)