|
|
A140010
|
|
Primes of the form 33x^2+40y^2.
|
|
2
|
|
|
73, 193, 337, 457, 673, 937, 1033, 1297, 1657, 1777, 1993, 2593, 2617, 2713, 2833, 2857, 3313, 3673, 4153, 4177, 4297, 4993, 5233, 5737, 5953, 6217, 6553, 6577, 6673, 6793, 7057, 7537, 7873, 7993, 8377, 9433, 9697, 10177, 10273, 10513, 10753
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Discriminant = -5280. See A139827 for more information.
|
|
LINKS
|
|
|
FORMULA
|
The primes are congruent to {73, 193, 217, 337, 457, 673, 937, 1033, 1273, 1297} (mod 1320).
|
|
MATHEMATICA
|
QuadPrimes2[33, 0, 40, 10000] (* see A106856 *)
|
|
PROG
|
(Magma) [p: p in PrimesUpTo(12000) | p mod 1320 in [73, 193, 217, 337, 457, 673, 937, 1033, 1273, 1297]]; // Vincenzo Librandi, Aug 04 2012
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|