login
A140010
Primes of the form 33x^2+40y^2.
2
73, 193, 337, 457, 673, 937, 1033, 1297, 1657, 1777, 1993, 2593, 2617, 2713, 2833, 2857, 3313, 3673, 4153, 4177, 4297, 4993, 5233, 5737, 5953, 6217, 6553, 6577, 6673, 6793, 7057, 7537, 7873, 7993, 8377, 9433, 9697, 10177, 10273, 10513, 10753
OFFSET
1,1
COMMENTS
Discriminant = -5280. See A139827 for more information.
Also primes of the form 52x^2+36xy+57y^2. See A140633. - T. D. Noe, May 19 2008
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
The primes are congruent to {73, 193, 217, 337, 457, 673, 937, 1033, 1273, 1297} (mod 1320).
MATHEMATICA
QuadPrimes2[33, 0, 40, 10000] (* see A106856 *)
PROG
(Magma) [p: p in PrimesUpTo(12000) | p mod 1320 in [73, 193, 217, 337, 457, 673, 937, 1033, 1273, 1297]]; // Vincenzo Librandi, Aug 04 2012
CROSSREFS
Sequence in context: A269790 A142741 A088199 * A122723 A089786 A142894
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 02 2008
STATUS
approved