%I #17 Sep 08 2022 08:45:34
%S 73,193,337,457,673,937,1033,1297,1657,1777,1993,2593,2617,2713,2833,
%T 2857,3313,3673,4153,4177,4297,4993,5233,5737,5953,6217,6553,6577,
%U 6673,6793,7057,7537,7873,7993,8377,9433,9697,10177,10273,10513,10753
%N Primes of the form 33x^2+40y^2.
%C Discriminant = -5280. See A139827 for more information.
%C Also primes of the form 52x^2+36xy+57y^2. See A140633. - _T. D. Noe_, May 19 2008
%H Vincenzo Librandi and Ray Chandler, <a href="/A140010/b140010.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]
%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%F The primes are congruent to {73, 193, 217, 337, 457, 673, 937, 1033, 1273, 1297} (mod 1320).
%t QuadPrimes2[33, 0, 40, 10000] (* see A106856 *)
%o (Magma) [p: p in PrimesUpTo(12000) | p mod 1320 in [73, 193, 217, 337, 457, 673, 937, 1033, 1273, 1297]]; // _Vincenzo Librandi_, Aug 04 2012
%K nonn,easy
%O 1,1
%A _T. D. Noe_, May 02 2008