The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A107151 Primes of the form 5x^2 + 9y^2. 3
5, 29, 41, 89, 101, 149, 269, 281, 389, 401, 449, 461, 509, 521, 569, 641, 701, 761, 809, 821, 881, 929, 941, 1049, 1061, 1109, 1181, 1229, 1289, 1301, 1361, 1409, 1481, 1601, 1709, 1721, 1889, 1901, 1949, 2069, 2081, 2129, 2141, 2309, 2381 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Discriminant = -180. See A107132 for more information.
Except for 5, also primes of the form 9x^2 + 6xy + 26y^2. See A140633. - T. D. Noe, May 19 2008
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
Except for 5, the primes are congruent to {29, 41} (mod 60). - T. D. Noe, May 02 2008
MATHEMATICA
QuadPrimes2[5, 0, 9, 10000] (* see A106856 *)
PROG
(Magma) [5] cat [ p: p in PrimesUpTo(3000) | p mod 60 in {29, 41 } ]; // Vincenzo Librandi, Jul 24 2012
(PARI) list(lim)=my(v=List([5]), t); forprime(p=29, lim, t=p%60; if(t==29||t==41, listput(v, p))); Vec(v) \\ Charles R Greathouse IV, Feb 09 2017
CROSSREFS
Cf. A139827.
Sequence in context: A091729 A033205 A167742 * A340154 A117746 A156053
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 13 2005
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 22 16:56 EDT 2024. Contains 372758 sequences. (Running on oeis4.)