login
A107144
Primes of the form 5x^2 + 8y^2.
3
5, 13, 37, 53, 157, 173, 197, 277, 293, 317, 373, 397, 557, 613, 653, 677, 733, 757, 773, 797, 853, 877, 997, 1013, 1093, 1117, 1213, 1237, 1277, 1373, 1453, 1493, 1597, 1613, 1637, 1693, 1733, 1877, 1933, 1973, 1997, 2053, 2213, 2237, 2293
OFFSET
1,1
COMMENTS
Discriminant = -160. See A107132 for more information.
Except for 5, also primes of the form 13x^2 + 8xy + 32y^2. See A140633. - T. D. Noe, May 19 2008
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
Except for 5, the primes are congruent to {13, 37} (mod 40). - T. D. Noe, May 02 2008
MATHEMATICA
QuadPrimes2[5, 0, 8, 10000] (* see A106856 *)
PROG
(Magma) [5] cat [ p: p in PrimesUpTo(3000) | p mod 40 in {13, 37} ]; // Vincenzo Librandi, Jul 24 2012
(PARI) list(lim)=my(v=List([5]), t); forprime(p=13, lim, t=p%40; if(t==13||t==37, listput(v, p))); Vec(v) \\ Charles R Greathouse IV, Feb 09 2017
CROSSREFS
Cf. A139827.
Sequence in context: A141408 A238460 A342475 * A137815 A089523 A375794
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 13 2005
STATUS
approved