login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089523
Primes p such that mu(p+1) = 1; that is, p+1 is squarefree and has an even number of distinct prime factors, where mu is the Moebius function.
2
5, 13, 37, 61, 73, 157, 193, 277, 313, 389, 397, 421, 457, 461, 509, 541, 569, 613, 661, 673, 733, 757, 769, 797, 857, 877, 929, 997, 1093, 1109, 1153, 1201, 1213, 1217, 1229, 1237, 1289, 1301, 1321, 1381, 1409, 1429, 1453, 1481, 1553, 1609, 1621, 1657
OFFSET
1,1
LINKS
Eric Weisstein's World of Mathematics, Moebius Function
MAPLE
select(n -> isprime(n) and numtheory:-mobius(n+1)=1, [seq(i, i=1..2000, 4)]); # Robert Israel, Aug 16 2018
MATHEMATICA
Select[Prime[Range[300]], MoebiusMu[ #+1]==1&]
PROG
(PARI) isok(p) = isprime(p) && (moebius(p+1) == 1); \\ Michel Marcus, Aug 16 2018
(Magma) [p: p in PrimesUpTo(2000) | MoebiusMu(p+1) eq 1]; // Vincenzo Librandi, Aug 17 2018
CROSSREFS
Cf. A089495 (mu(p+1) for prime p), A049098 (primes p with mu(p+1)=0), A078329 (primes p with mu(p+1)=-1).
Sequence in context: A342475 A107144 A137815 * A375794 A058507 A111057
KEYWORD
nonn
AUTHOR
T. D. Noe, Nov 06 2003
STATUS
approved