login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107142
Primes of the form x^2 + 36y^2.
2
37, 61, 157, 193, 313, 349, 373, 397, 433, 577, 601, 613, 661, 673, 769, 853, 877, 937, 997, 1021, 1069, 1201, 1297, 1321, 1429, 1549, 1657, 1693, 1741, 1789, 1801, 1861, 1933, 1993, 2053, 2137, 2269, 2293, 2389, 2437, 2473, 2521, 2593, 2749
OFFSET
1,1
COMMENTS
Discriminant = -144. See A107132 for more information.
These appear to be the same as Glaisher's 1889 list of primes == 1 mod 12 that have "positive character". - N. J. A. Sloane, Jul 30 2015
REFERENCES
J. W. L. Glaisher, On the square of Euler's series, Proc. London Math. Soc., 21 (1889), 182-194.
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
S. R. Finch, Powers of Euler's q-Series, (arXiv:math.NT/0701251).
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
MATHEMATICA
QuadPrimes2[1, 0, 36, 10000] (* see A106856 *)
PROG
(PARI) list(lim)=my(v=List(), w, t); for(x=1, sqrtint(lim\1), w=x^2; for(y=1, sqrtint((lim-w)\36), if(isprime(t=w+36*y^2), listput(v, t)))); Set(v) \\ Charles R Greathouse IV, Feb 09 2017
CROSSREFS
Sequence in context: A354156 A139960 A103946 * A158018 A226697 A117475
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 13 2005
STATUS
approved