The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A136637 a(n) = Sum_{k=0..n} C(n, k) * C(2^k*3^(n-k), n). 3
 1, 5, 72, 6089, 3326498, 12405917044, 336474648380394, 69883583587428350874, 115099747754889610404191160, 1536533057081060754026861201898620, 168527150638482484315370462123098294514192 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Equals row sums of triangle A136635. LINKS FORMULA G.f.: A(x) = Sum_{n>=0} log(1 + (2^n + 3^n)*x )^n / n!. a(n) ~ 3^(n^2) / n!. - Vaclav Kotesovec, Jul 02 2016 EXAMPLE More generally, if Sum_{n>=0} log(1 + (p^n + r*q^n)*x )^n / n! = Sum_{n>=0} b(n)*x^n, then b(n) = Sum_{k=0..n} C(n,k)*r^(n-k) * C(p^k*q^(n-k), n) (a result due to Vladeta Jovovic, Jan 13 2008). MATHEMATICA Table[Sum[Binomial[n, k]*Binomial[2^k*3^(n-k), n], {k, 0, n}], {n, 0, 15}] (* Vaclav Kotesovec, Jul 02 2016 *) PROG (PARI) {a(n)=sum(k=0, n, binomial(n, k)*binomial(2^k*3^(n-k), n))} (PARI) /* Using g.f.: */ {a(n)=polcoeff(sum(i=0, n, log(1+(2^i+3^i)*x)^i/i!), n, x)} CROSSREFS Cf. A136635 (triangle), A014070 (main diagonal), A136393 (column 0), A136636 (column 1), A136638 (antidiagonal sums). Sequence in context: A197324 A197977 A307932 * A319767 A341670 A138623 Adjacent sequences:  A136634 A136635 A136636 * A136638 A136639 A136640 KEYWORD nonn AUTHOR Vladeta Jovovic and Paul D. Hanna, Jan 15 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 10 03:38 EDT 2022. Contains 356029 sequences. (Running on oeis4.)