OFFSET
0,2
COMMENTS
FORMULA
G.f.: A(x,y) = Sum_{n>=0} log(1 + 3^n*x + 2^n*x*y)^n / n!.
EXAMPLE
Triangle begins:
1;
3, 2;
36, 30, 6;
2925, 2448, 660, 56;
1663740, 1265004, 353430, 42504, 1820;
6774333588, 4368213360, 1114691760, 139915440, 8561520, 201376;
204208594169580, 106458751541142, 23004238451040, 2630276490960, 167150463480, 5562289824, 74974368; ...
MATHEMATICA
Flatten[Table[Binomial[n, k]Binomial[2^k 3^(n-k), n], {n, 0, 10}, {k, 0, n}]] (* Harvey P. Dale, Dec 13 2012 *)
PROG
(PARI) {T(n, k)=binomial(n, k)*binomial(2^k*3^(n-k), n)}
(PARI) /* Using g.f.: */ {T(n, k)=polcoeff(polcoeff(sum(i=0, n, log(1+3^i*x+2^i*x*y)^i/i!), n, x), k, y)}
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Vladeta Jovovic and Paul D. Hanna, Jan 15 2008
STATUS
approved