login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136638
a(n) = Sum_{k=0..[n/2]} C(n-k, k) * C(3^(n-2*k)*2^k, n-k).
3
1, 3, 38, 2955, 1666194, 6775599252, 204212962736426, 47025953519744215608, 84798028785462127288681736, 1219731316443261012339196962784452, 141916030637329352970764084182705691263552
OFFSET
0,2
COMMENTS
Equals antidiagonal sums of triangle A136635.
FORMULA
G.f.: A(x) = Sum_{n>=0} log(1 + 3^n*x + 2^n*x^2)^n / n!.
a(n) ~ 3^(n^2) / n!. - Vaclav Kotesovec, Jul 02 2016
EXAMPLE
More generally, if Sum_{n>=0} log(1 + b*p^n*x + d*q^n*x^2)^n/n! = Sum_{n>=0} a(n)*x^n then a(n) = Sum_{k=0..[n/2]} C(n-k,k)*b^(n-2k)*d^k*C(p^(n-2k)*q^k,n-k).
MATHEMATICA
Table[Sum[Binomial[n-k, k]*Binomial[2^k*3^(n-2*k), n-k], {k, 0, Floor[n/2]}], {n, 0, 15}] (* Vaclav Kotesovec, Jul 02 2016 *)
PROG
(PARI) {a(n)=sum(k=0, n\2, binomial(n-k, k)*binomial(3^(n-2*k)*2^k, n-k))}
(PARI) /* Using g.f.: */ {a(n)=polcoeff(sum(i=0, n, log(1+3^i*x+2^i*x^2)^i/i!), n, x)}
CROSSREFS
Cf. A136635 (triangle), A014070 (main diagonal), A136393 (column 0), A136636 (column 1), A136637 (row sums).
Sequence in context: A278927 A099022 A229365 * A213002 A213003 A213004
KEYWORD
nonn
AUTHOR
STATUS
approved