login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A136638 a(n) = Sum_{k=0..[n/2]} C(n-k, k) * C(3^(n-2*k)*2^k, n-k). 3
1, 3, 38, 2955, 1666194, 6775599252, 204212962736426, 47025953519744215608, 84798028785462127288681736, 1219731316443261012339196962784452, 141916030637329352970764084182705691263552 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Equals antidiagonal sums of triangle A136635.

LINKS

Table of n, a(n) for n=0..10.

FORMULA

G.f.: A(x) = Sum_{n>=0} log(1 + 3^n*x + 2^n*x^2)^n / n!.

a(n) ~ 3^(n^2) / n!. - Vaclav Kotesovec, Jul 02 2016

EXAMPLE

More generally, if Sum_{n>=0} log(1 + b*p^n*x + d*q^n*x^2)^n/n! = Sum_{n>=0} a(n)*x^n then a(n) = Sum_{k=0..[n/2]} C(n-k,k)*b^(n-2k)*d^k*C(p^(n-2k)*q^k,n-k).

MATHEMATICA

Table[Sum[Binomial[n-k, k]*Binomial[2^k*3^(n-2*k), n-k], {k, 0, Floor[n/2]}], {n, 0, 15}] (* Vaclav Kotesovec, Jul 02 2016 *)

PROG

(PARI) {a(n)=sum(k=0, n\2, binomial(n-k, k)*binomial(3^(n-2*k)*2^k, n-k))}

(PARI) /* Using g.f.: */ {a(n)=polcoeff(sum(i=0, n, log(1+3^i*x+2^i*x^2)^i/i!), n, x)}

CROSSREFS

Cf. A136635 (triangle), A014070 (main diagonal), A136393 (column 0), A136636 (column 1), A136637 (row sums).

Sequence in context: A278927 A099022 A229365 * A213002 A213003 A213004

Adjacent sequences:  A136635 A136636 A136637 * A136639 A136640 A136641

KEYWORD

nonn

AUTHOR

Vladeta Jovovic and Paul D. Hanna, Jan 15 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 08:53 EST 2019. Contains 329788 sequences. (Running on oeis4.)