login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A136639 G.f. A(x) satisfies: 1 + 4x = Sum_{n>=0} x^n * [y^n] A(y)^{2^n}, so that the coefficient of y^n in the (2^n)-th power of A(y) is zero for n>1. 0
1, 2, -6, 28, -410, -40548, -25678044, -46695237064, -261442466307066, -4697327493273424596, -282093987534237286507572, -58573002543105566470447978872, -43150254003464729476289222051517988, -114953354885565948577897809039842112360424 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..13.

FORMULA

G.f. A(x) satisfies: 1 + 4x = Sum_{n>=0} log( A(2^n*x) )^n / n!.

EXAMPLE

A(x) = 1 + 2*x - 6*x^2 + 28*x^3 - 410*x^4 - 40548*x^5 - 25678044*x^6 -...

Illustrate 1 + 4x = Sum_{n>=0} x^n * [y^n] A(y)^{2^n} by listing

the initial coefficients in the (2^n)-th powers of A(x):

A^(2^0)=[1, 2, -6, 28, -410, -40548, -25678044, -46695237064,...];

A^(2^1)=[1, 4, -8, 32, -672, -83072, -51512576, -93492722688,...];

A^(2^2)=[1, 8, 0, 0, -1024, -172032, -103677952, -187396259840,...];

A^(2^3)=[1, 16, 64, 0, -2048, -360448, -210108416, -376451366912,...];

A^(2^4)=[1, 32, 384, 2048, 0, -786432, -432013312, -759672340480,...];

A^(2^5)=[1, 64, 1792, 28672, 278528, 0, -910163968, -1547597512704,...];

A^(2^6)=[1, 128, 7680, 286720, 7438336, 138412032, 0, -3195724103680,.];

A^(2^7)=[1, 256, 31744, 2539520, 147259392, 6585057280, 231894679552, 0,.];

the main diagonal is all zeros except for the initial [1,4].

PROG

(PARI) {a(n)=local(A=[1]); if(n==1, 2, for(i=0, n, A=Vec(Ser(concat(Vec(Ser(A)^(2^#A)), if(#A==1, 1, 0)))^(1/2^#A))); A[n+1]*4^n)}

CROSSREFS

Sequence in context: A325507 A306793 A326359 * A284594 A027109 A107375

Adjacent sequences:  A136636 A136637 A136638 * A136640 A136641 A136642

KEYWORD

sign

AUTHOR

Paul D. Hanna, Jan 19 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 04:15 EST 2019. Contains 329885 sequences. (Running on oeis4.)