login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136639
G.f. A(x) satisfies: 1 + 4x = Sum_{n>=0} x^n * [y^n] A(y)^{2^n}, so that the coefficient of y^n in the (2^n)-th power of A(y) is zero for n>1.
0
1, 2, -6, 28, -410, -40548, -25678044, -46695237064, -261442466307066, -4697327493273424596, -282093987534237286507572, -58573002543105566470447978872, -43150254003464729476289222051517988, -114953354885565948577897809039842112360424
OFFSET
0,2
FORMULA
G.f. A(x) satisfies: 1 + 4x = Sum_{n>=0} log( A(2^n*x) )^n / n!.
EXAMPLE
A(x) = 1 + 2*x - 6*x^2 + 28*x^3 - 410*x^4 - 40548*x^5 - 25678044*x^6 -...
Illustrate 1 + 4x = Sum_{n>=0} x^n * [y^n] A(y)^{2^n} by listing
the initial coefficients in the (2^n)-th powers of A(x):
A^(2^0)=[1, 2, -6, 28, -410, -40548, -25678044, -46695237064,...];
A^(2^1)=[1, 4, -8, 32, -672, -83072, -51512576, -93492722688,...];
A^(2^2)=[1, 8, 0, 0, -1024, -172032, -103677952, -187396259840,...];
A^(2^3)=[1, 16, 64, 0, -2048, -360448, -210108416, -376451366912,...];
A^(2^4)=[1, 32, 384, 2048, 0, -786432, -432013312, -759672340480,...];
A^(2^5)=[1, 64, 1792, 28672, 278528, 0, -910163968, -1547597512704,...];
A^(2^6)=[1, 128, 7680, 286720, 7438336, 138412032, 0, -3195724103680,.];
A^(2^7)=[1, 256, 31744, 2539520, 147259392, 6585057280, 231894679552, 0,.];
the main diagonal is all zeros except for the initial [1,4].
PROG
(PARI) {a(n)=local(A=[1]); if(n==1, 2, for(i=0, n, A=Vec(Ser(concat(Vec(Ser(A)^(2^#A)), if(#A==1, 1, 0)))^(1/2^#A))); A[n+1]*4^n)}
CROSSREFS
Sequence in context: A325507 A306793 A326359 * A368003 A368143 A284594
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jan 19 2008
STATUS
approved