This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A136639 G.f. A(x) satisfies: 1 + 4x = Sum_{n>=0} x^n * [y^n] A(y)^{2^n}, so that the coefficient of y^n in the (2^n)-th power of A(y) is zero for n>1. 0
 1, 2, -6, 28, -410, -40548, -25678044, -46695237064, -261442466307066, -4697327493273424596, -282093987534237286507572, -58573002543105566470447978872, -43150254003464729476289222051517988, -114953354885565948577897809039842112360424 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS FORMULA G.f. A(x) satisfies: 1 + 4x = Sum_{n>=0} log( A(2^n*x) )^n / n!. EXAMPLE A(x) = 1 + 2*x - 6*x^2 + 28*x^3 - 410*x^4 - 40548*x^5 - 25678044*x^6 -... Illustrate 1 + 4x = Sum_{n>=0} x^n * [y^n] A(y)^{2^n} by listing the initial coefficients in the (2^n)-th powers of A(x): A^(2^0)=[1, 2, -6, 28, -410, -40548, -25678044, -46695237064,...]; A^(2^1)=[1, 4, -8, 32, -672, -83072, -51512576, -93492722688,...]; A^(2^2)=[1, 8, 0, 0, -1024, -172032, -103677952, -187396259840,...]; A^(2^3)=[1, 16, 64, 0, -2048, -360448, -210108416, -376451366912,...]; A^(2^4)=[1, 32, 384, 2048, 0, -786432, -432013312, -759672340480,...]; A^(2^5)=[1, 64, 1792, 28672, 278528, 0, -910163968, -1547597512704,...]; A^(2^6)=[1, 128, 7680, 286720, 7438336, 138412032, 0, -3195724103680,.]; A^(2^7)=[1, 256, 31744, 2539520, 147259392, 6585057280, 231894679552, 0,.]; the main diagonal is all zeros except for the initial [1,4]. PROG (PARI) {a(n)=local(A=[1]); if(n==1, 2, for(i=0, n, A=Vec(Ser(concat(Vec(Ser(A)^(2^#A)), if(#A==1, 1, 0)))^(1/2^#A))); A[n+1]*4^n)} CROSSREFS Sequence in context: A325507 A306793 A326359 * A284594 A027109 A107375 Adjacent sequences:  A136636 A136637 A136638 * A136640 A136641 A136642 KEYWORD sign AUTHOR Paul D. Hanna, Jan 19 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 10 04:15 EST 2019. Contains 329885 sequences. (Running on oeis4.)