login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. A(x) satisfies: 1 + 4x = Sum_{n>=0} x^n * [y^n] A(y)^{2^n}, so that the coefficient of y^n in the (2^n)-th power of A(y) is zero for n>1.
0

%I #3 Mar 30 2012 18:37:09

%S 1,2,-6,28,-410,-40548,-25678044,-46695237064,-261442466307066,

%T -4697327493273424596,-282093987534237286507572,

%U -58573002543105566470447978872,-43150254003464729476289222051517988,-114953354885565948577897809039842112360424

%N G.f. A(x) satisfies: 1 + 4x = Sum_{n>=0} x^n * [y^n] A(y)^{2^n}, so that the coefficient of y^n in the (2^n)-th power of A(y) is zero for n>1.

%F G.f. A(x) satisfies: 1 + 4x = Sum_{n>=0} log( A(2^n*x) )^n / n!.

%e A(x) = 1 + 2*x - 6*x^2 + 28*x^3 - 410*x^4 - 40548*x^5 - 25678044*x^6 -...

%e Illustrate 1 + 4x = Sum_{n>=0} x^n * [y^n] A(y)^{2^n} by listing

%e the initial coefficients in the (2^n)-th powers of A(x):

%e A^(2^0)=[1, 2, -6, 28, -410, -40548, -25678044, -46695237064,...];

%e A^(2^1)=[1, 4, -8, 32, -672, -83072, -51512576, -93492722688,...];

%e A^(2^2)=[1, 8, 0, 0, -1024, -172032, -103677952, -187396259840,...];

%e A^(2^3)=[1, 16, 64, 0, -2048, -360448, -210108416, -376451366912,...];

%e A^(2^4)=[1, 32, 384, 2048, 0, -786432, -432013312, -759672340480,...];

%e A^(2^5)=[1, 64, 1792, 28672, 278528, 0, -910163968, -1547597512704,...];

%e A^(2^6)=[1, 128, 7680, 286720, 7438336, 138412032, 0, -3195724103680,.];

%e A^(2^7)=[1, 256, 31744, 2539520, 147259392, 6585057280, 231894679552, 0,.];

%e the main diagonal is all zeros except for the initial [1,4].

%o (PARI) {a(n)=local(A=[1]); if(n==1, 2, for(i=0, n, A=Vec(Ser(concat(Vec(Ser(A)^(2^#A)),if(#A==1,1,0)))^(1/2^#A))); A[n+1]*4^n)}

%K sign

%O 0,2

%A _Paul D. Hanna_, Jan 19 2008