login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A136640
A limited integer Devil's staircase from a winding number function.
2
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 9, 13, 16, 18, 20, 22, 24, 26, 28, 29, 31, 33, 34, 36, 37, 39, 40, 41, 43, 44, 46, 47, 49, 50, 51, 51, 53, 54, 56, 58, 58, 60, 61, 63, 65, 67, 67, 67, 67, 67, 67, 70, 72, 73, 75, 76, 77, 79
OFFSET
1,33
COMMENTS
Designed to be integer and 200 in length, this function is a limited representation of a Devil's staircase function; a projection of a set of rational numbers onto the integers.
LINKS
Per Bak, Commensurate phases, incommensurate phases and the devil's staircase, Rep. Prog. Phys. 45 (1982) pp.587-629.
Eric Weisstein's World of Mathematics, Devil's Staircase.
FORMULA
a(n) = floor(1+200*Winding_Number(Omega)): 0<=omega<=1;in steps of 1/200
MATHEMATICA
f[{omega_, t_}]:={omega, t+omega-Sin[2Pi t]/(2Pi)}; WindingNumber[n_, {omega_, t_}]:=(Nest[f, {omega, t}, n][[2]]-t)/n; a=Table[Floor[1+200*WindingNumber[1000, {omega, 0}]], {omega, 0, 1, .005}]
CROSSREFS
Sequence in context: A312873 A312874 A312875 * A068949 A312876 A312877
KEYWORD
nonn,less,uned
AUTHOR
Roger L. Bagula, Apr 01 2008
STATUS
approved