login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136634
Primes whose reversals in bases 10, 9, 8, 7, 6, 5, 4, 3 and 2 are all prime.
5
93836531, 1819395637, 1919723027, 1963209431, 3277373311, 3540866053, 15969326033, 16075946743, 16735166477, 17145519379, 71606465171, 71624919101, 72338598089, 73544885809, 73939267019, 74592559721
OFFSET
1,1
LINKS
EXAMPLE
Prime 93836531 reversed base 10 = 13563839, a prime.
93836531 = 215511462 base 9, reversed = 264115512 base 9 = 116986691, a prime.
93836531 = 545752363 base 8, reversed = 363257545 base 8 = 63790949, a prime.
93836531 = 2216411615 base 7, reversed = 5161146122 base 7 = 212620277, a prime.
93836531 = 13151124215 base 6, reversed = 51242115131 base 6 = 316991071, a prime.
93836531 = 143010232111 base 5, reversed = 111232010341 base 5 = 61594471, a prime.
93836531 = 11211331103303 base 4, reversed = 30330113311211 base 4 = 217152869, a prime.
93836531 = 20112120101112002 base 3, reversed = 20021110102121102 base 3 = 90058187, a prime.
93836531 = 101100101111101010011110011 base 2, reversed = 110011110010101111101001101 base 2 = 108617549, a prime.
PROG
(PARI) emirp(p, b)=my(q, t=p); while(t, q=b*q+t%b; t\=b); isprime(q) && p!=q
is(n)=for(b=2, 10, if(!emirp(n, b), return(0))); isprime(n) \\ Charles R Greathouse IV, Sep 03 2013
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Harry J. Smith, Jan 15 2008
STATUS
approved