login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A147527
Numbers k such that there exists x in N : (x + 103)^3 - x^3 = k^2.
4
93645643, 12024611022569890927, 1544025601332411913276450522087, 198261303679194296628699373223979621125203, 25457832112792289938442435570354101121237746019778883, 3268924413670798537740342016261657034171968745307560952072318967
OFFSET
1,1
FORMULA
a(n+2) = 128405450990*a(n+1) - a(n).
G.f.: 93645643*x*(1-x)/(1 - 128405450990*x + x^2). - Colin Barker, Oct 21 2014
a(n) = sqrt((A147528(n) + 103)^3 - A147528(n)^3). - Michel Marcus, Jan 10 2020
EXAMPLE
a(1)=93645643 because the first relation is (5327263 + 103)^3 - 5327263^3 = 93645643^2.
MAPLE
seq(coeff(series(93645643*x*(1-x)/(1 - 128405450990*x + x^2), x, n+1), x, n), n = 0..20); # G. C. Greubel, Jan 10 2020
MATHEMATICA
LinearRecurrence[{128405450990, -1}, {93645643, 12024611022569890927}, 20] (* G. C. Greubel, Jan 10 2020 *)
PROG
(PARI) Vec(93645643*x*(1-x)/(1-128405450990*x+x^2) + O(x^20)) \\ Colin Barker, Oct 21 2014
(Magma) I:=[93645643, 12024611022569890927]; [n le 2 select I[n] else 128405450990*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 10 2020
(Sage)
def A147527_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 93645643*x*(1-x)/(1 - 128405450990*x + x^2) ).list()
a=A147527_list(20); a[1:] # G. C. Greubel, Jan 10 2020
(GAP) a:=[93645643, 12024611022569890927];; for n in [3..20] do a[n]:=128405450990*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 10 2020
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Richard Choulet, Nov 06 2008
EXTENSIONS
Editing and a(6) from Colin Barker, Oct 21 2014
STATUS
approved