|
|
A147527
|
|
Numbers k such that there exists x in N : (x + 103)^3 - x^3 = k^2.
|
|
4
|
|
|
93645643, 12024611022569890927, 1544025601332411913276450522087, 198261303679194296628699373223979621125203, 25457832112792289938442435570354101121237746019778883, 3268924413670798537740342016261657034171968745307560952072318967
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 1..50
Index entries for linear recurrences with constant coefficients, signature (128405450990,-1).
|
|
FORMULA
|
a(n+2) = 128405450990*a(n+1) - a(n).
a(n) = (93645643/2)*( (64202725495 + 3652365444*sqrt(309))^n + (64202725495 - 3652365444*sqrt(309))^n ) - (10654629*sqrt(309)/4)*( (64202725495 - 3652365444*sqrt(309))^n - (64202725495 + 3652365444*sqrt(309))^n ) with n >= 0. - Paolo P. Lava, Nov 25 2008
G.f.: 93645643*x*(1-x)/(1 - 128405450990*x + x^2). - Colin Barker, Oct 21 2014
a(n) = sqrt(A147528(n) + 103)^3 - A147528(n)^3). - Michel Marcus, Jan 10 2020
|
|
EXAMPLE
|
a(1)=93645643 because the first relation is (5327263 + 103)^3 - 5327263^3 = 93645643^2.
|
|
MAPLE
|
seq(coeff(series(93645643*x*(1-x)/(1 - 128405450990*x + x^2), x, n+1), x, n), n = 0..20); # G. C. Greubel, Jan 10 2020
|
|
MATHEMATICA
|
LinearRecurrence[{128405450990, -1}, {93645643, 12024611022569890927}, 20] (* G. C. Greubel, Jan 10 2020 *)
|
|
PROG
|
(PARI) Vec(93645643*x*(1-x)/(1-128405450990*x+x^2) + O(x^20)) \\ Colin Barker, Oct 21 2014
(MAGMA) I:=[93645643, 12024611022569890927]; [n le 2 select I[n] else 128405450990*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 10 2020
(Sage)
def A147527_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 93645643*x*(1-x)/(1 - 128405450990*x + x^2) ).list()
a=A147527_list(20); a[1:] # G. C. Greubel, Jan 10 2020
(GAP) a:=[93645643, 12024611022569890927];; for n in [3..20] do a[n]:=128405450990*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 10 2020
|
|
CROSSREFS
|
Cf. A147528, A147529, A147530.
Sequence in context: A205665 A205465 A117624 * A293244 A136634 A033625
Adjacent sequences: A147524 A147525 A147526 * A147528 A147529 A147530
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Richard Choulet, Nov 06 2008
|
|
EXTENSIONS
|
Editing and a(6) from Colin Barker, Oct 21 2014
|
|
STATUS
|
approved
|
|
|
|