login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A147526
Numbers Y such that 309*Y^2 + 103 is a square.
2
103443, 13282645066862013, 1705564030150515483364139427, 219003718483798898222336882872108320717, 28121271240399196534702571172873724898314581020403, 3610924516035575538671909833246940100991053329934869498228253
OFFSET
1,1
FORMULA
a(n) = sqrt((A147525(n)^2 - 103)/309). - Colin Barker, Oct 22 2014
G.f.: 103443*x*(1+x)/(1 - 128405450990*x + x^2). - Colin Barker, Oct 21 2014
EXAMPLE
a(1)=103443 because the first relation is : 1818362^2=309*103443^2+103.
MAPLE
seq(coeff(series(103443*x*(1+x)/(1-128405450990*x+x^2), x, n+1), x, n), n = 1..20); # G. C. Greubel, Jan 10 2020
MATHEMATICA
CoefficientList[Series[103443(1+x)/(1-128405450990x+x^2), {x, 0, 20}], x] (* Vincenzo Librandi, Oct 22 2014 *)
LinearRecurrence[{128405450990, -1}, {103443, 13282645066862013}, 10] (* Harvey P. Dale, Sep 19 2020 *)
PROG
(PARI) Vec(103443*x*(1+x)/(1-128405450990*x+x^2) + O(x^20)) \\ Colin Barker, Oct 21 2014
(Magma) I:=[103443, 13282645066862013]; [n le 2 select I[n] else 128405450990*Self(n-1)-Self(n-2): n in [1..10]]; // Vincenzo Librandi, Oct 22 2014
(Sage)
def A147526_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 103443*x*(1+x)/(1-128405450990*x+x^2) ).list()
a=A147526_list(20); a[1:] # G. C. Greubel, Jan 10 2020
(GAP) a:=[103443, 13282645066862013];; for n in [3..20] do a[n]:=128405450990*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 10 2020
CROSSREFS
Cf. A147525.
Sequence in context: A250941 A237572 A255210 * A269218 A237894 A171162
KEYWORD
nonn,easy
AUTHOR
Richard Choulet, Nov 06 2008
EXTENSIONS
Errors in terms corrected, and a(6) added by Colin Barker, Oct 21 2014
STATUS
approved