login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A127345
a(n) = pq + pr + qr with p = prime(n), q = prime(n+1), and r = prime(n+2).
16
31, 71, 167, 311, 551, 791, 1151, 1655, 2279, 3119, 3935, 4871, 5711, 6791, 8391, 9959, 11639, 13175, 14831, 16559, 18383, 20975, 24071, 27419, 30191, 32231, 33911, 36071, 40511, 45791, 51983, 55199, 60167, 64199, 69599, 73911, 79031, 84311
OFFSET
1,1
COMMENTS
a(n) = coefficient of x^1 of the polynomial Product_{j=0..2} (x-prime(n+j)) of degree 3; the roots of this polynomial are prime(n), ..., prime(n+2); cf. Vieta's formulas.
Arithmetic derivative (see A003415) of prime(n)*prime(n+1)*prime(n+2). [Giorgio Balzarotti, May 26 2011]
LINKS
Eric Weisstein's World of Mathematics, Vieta's Formulas
MATHEMATICA
Table[Prime[n]*Prime[n+1] + Prime[n]*Prime[n+2] + Prime[n+1]*Prime[n+2], {n, 100}]
Total[Times@@@Subsets[#, {2}]]&/@Partition[Prime[Range[40]], 3, 1] (* Harvey P. Dale, Sep 11 2017 *)
PROG
(PARI) {m=38; k=2; for(n=1, m, print1(sum(i=n, n+k-1, sum(j=i+1, n+k, prime(i)*prime(j))), ", "))} \\ Klaus Brockhaus, Jan 21 2007
(PARI) {m=38; k=2; for(n=1, m, print1(polcoeff(prod(j=0, k, (x-prime(n+j))), 1), ", "))} \\ Klaus Brockhaus, Jan 21 2007
(PARI) p=2; q=3; forprime(r=5, 1e3, print1(p*q+p*r+q*r", "); p=q; q=r) \\ Charles R Greathouse IV, Jan 13 2012
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Jan 11 2007
EXTENSIONS
Edited by Klaus Brockhaus, Jan 21 2007
STATUS
approved