login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331260
Denominator of harmonic mean of 3 consecutive primes. Numerators are A331259.
2
31, 71, 167, 311, 551, 791, 1151, 1655, 2279, 3119, 3935, 4871, 5711, 6791, 2797, 9959, 11639, 13175, 14831, 16559, 18383, 20975, 24071, 27419, 30191, 32231, 33911, 36071, 40511, 45791, 51983, 55199, 60167, 64199, 69599, 24637, 79031, 84311, 29917, 94679
OFFSET
1,1
LINKS
FORMULA
a(n) = denominator ((3*p1*p2*p3)/(p2*p3 + p1*p3 + p1*p2)) with p1 = prime(n), p2 = prime(n + 1), p3 = prime(n + 2).
a(n) = (p1*p2 + p1*p3 + p2*p3)/3 if p1 == p2 == p3 (mod 3), otherwise p1*p2 + p1*p3 + p2*p3. - Robert Israel, Jul 29 2024
EXAMPLE
See A331259.
MAPLE
P:= [seq(ithprime(i), i=1..102)]:
f:= proc(a, b, c) if nops({a, b, c} mod 3) = 1 then (a*b+a*c+b*c)/3 else a*b+a*c+b*c fi end proc;
[seq(f(P[i], P[i+1], P[i+2]), i=1..100)]; # Robert Israel, Jul 28 2024
PROG
(PARI) hm3(x, y, z)=3/(1/x+1/y+1/z);
p1=2; p2=3; forprime(p3=5, 190, print1(denominator(hm3(p1, p2, p3)), ", "); p1=p2; p2=p3)
CROSSREFS
KEYWORD
nonn,frac,look
AUTHOR
Hugo Pfoertner, Jan 19 2020
STATUS
approved