login
A292530
Primes prime(k) such that neither prime(k) + prime(k-1) nor prime(k) + prime(k+1) is divisible by 3.
3
3, 53, 157, 173, 211, 257, 263, 373, 509, 541, 563, 593, 607, 653, 733, 947, 977, 997, 1069, 1103, 1123, 1187, 1223, 1237, 1367, 1459, 1499, 1511, 1543, 1747, 1753, 1759, 1777, 1901, 1907, 1913, 2069, 2179, 2287, 2399, 2411, 2417, 2447, 2677, 2903, 2963, 3061, 3067, 3181, 3203, 3307, 3313, 3511
OFFSET
1,1
COMMENTS
Prime(k) is the k-th prime. It seems to be rare that the sum of two consecutive primes is not divisible by 3. For each prime(k) in this sequence (other than prime(2) = 3), the three numbers prime(k-1), prime(k), and prime(k+1) are all of the form 6*x+1 or all of the form 6*x-1.
Apart from the first term a(1) = 3 also middle of 3 consecutive primes whose sum is divisible by 3. - Hugo Pfoertner, Aug 29 2020
EXAMPLE
3 is a term, because 3+2 = 5 and 3+5 = 8; neither 5 nor 8 is divisible by 3.
53 is a term as well, because 53+47 = 100 and 53+59 = 112, and neither 100 nor 112 is divisible by 3.
MAPLE
Primes:= select(isprime, [2, seq(i, i=3..10000, 2)]):
R:= select(k -> Primes[k]+Primes[k-1] mod 3 <> 0, {$2..nops(Primes)}):
R:= R intersect map(`-`, R, 1);
Primes[sort(convert(R, list))]; # Robert Israel, Sep 18 2017
MATHEMATICA
Select[Prime@ Range@ 500, NoneTrue[# + {NextPrime[#, -1], NextPrime@ #}, Divisible[#, 3] &] &] (* Michael De Vlieger, Sep 19 2017 *)
PROG
(PARI) isok(p) = isprime(p) && ((p + precprime(p-1)) % 3) && ((p + nextprime(p+1)) % 3) \\ Michel Marcus, Sep 18 2017
CROSSREFS
Sequence in context: A106997 A141929 A216042 * A036941 A215435 A121504
KEYWORD
nonn
AUTHOR
Marc Morgenegg, Sep 18 2017
EXTENSIONS
More terms from Robert Israel, Sep 18 2017
STATUS
approved