Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Jul 29 2024 06:20:29
%S 31,71,167,311,551,791,1151,1655,2279,3119,3935,4871,5711,6791,2797,
%T 9959,11639,13175,14831,16559,18383,20975,24071,27419,30191,32231,
%U 33911,36071,40511,45791,51983,55199,60167,64199,69599,24637,79031,84311,29917,94679
%N Denominator of harmonic mean of 3 consecutive primes. Numerators are A331259.
%H Robert Israel, <a href="/A331260/b331260.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = denominator ((3*p1*p2*p3)/(p2*p3 + p1*p3 + p1*p2)) with p1 = prime(n), p2 = prime(n + 1), p3 = prime(n + 2).
%F a(n) = (p1*p2 + p1*p3 + p2*p3)/3 if p1 == p2 == p3 (mod 3), otherwise p1*p2 + p1*p3 + p2*p3. - _Robert Israel_, Jul 29 2024
%e See A331259.
%p P:= [seq(ithprime(i),i=1..102)]:
%p f:= proc(a,b,c) if nops({a,b,c} mod 3) = 1 then (a*b+a*c+b*c)/3 else a*b+a*c+b*c fi end proc;
%p [seq(f(P[i],P[i+1],P[i+2]),i=1..100)]; # _Robert Israel_, Jul 28 2024
%o (PARI) hm3(x, y, z)=3/(1/x+1/y+1/z);
%o p1=2; p2=3; forprime(p3=5, 190, print1(denominator(hm3(p1, p2, p3)), ", "); p1=p2; p2=p3)
%Y Cf. A046301, A127345, A292530, A331259.
%K nonn,frac,look
%O 1,1
%A _Hugo Pfoertner_, Jan 19 2020