login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089704
Primes in which the unit place digit is 1 and the k-th most significant digit is prime (2,3,5,7) if k is prime else is composite (4,6,8,9,0).
3
31, 71, 251, 271, 331, 521, 571, 751, 4231, 4271, 4721, 4751, 6221, 6271, 6521, 6551, 6571, 8221, 8231, 8521, 8731, 9221, 9371, 9521, 9551, 9721, 20231, 20521, 20551, 20731, 20771, 24251, 24371, 24551, 24571, 26251, 26321, 26371, 26731, 28351
OFFSET
1,1
LINKS
EXAMPLE
6271 is a member as unit place digit is 1, second MSD is prime, third MSD is prime and the fourth MSD is composite.
MAPLE
with(combinat, cartprod): ds:=proc(s) local j, l: l:=nops(s): RETURN(add(s[j]*10^(l-j), j=1..l)):end: p:=[2, 3, 5, 7]:c:=[0, 4, 6, 8, 9]: ctpr:=proc(n, s) local m, T, a: a:=s: m:=1: T:=cartprod([seq(piecewise(isprime(n-i+2), p, c), i=2..n), [1]]): while not T[finished] do m:=ds(T[nextvalue]()): if isprime(m) and not member(m, a) then a:=[op(a), m] fi od: RETURN(a): end: a:=[]: for n from 1 to 5 do a:=ctpr(n, a) od: op(a); # C. Ronaldo
MATHEMATICA
rdQ[n_]:=Module[{ridn=Reverse[IntegerDigits[n]]}, Total[Which[#[[1]]==#[[2]] == 1, 1, AllTrue[#, PrimeQ], 1, AllTrue[#, CompositeQ], 1, CompositeQ[#[[2]]] && #[[1]] == 0, 1, True, 0]&/@Table[{ridn[[k]], k}, {k, Length[ ridn]}]] == Length[ ridn]]; Select[Prime[Range[3100]], rdQ] (* Harvey P. Dale, Jan 17 2021 *)
CROSSREFS
Cf. A089705.
Sequence in context: A331260 A127345 A127346 * A287609 A210548 A146353
KEYWORD
base,nonn
AUTHOR
Amarnath Murthy, Nov 10 2003
EXTENSIONS
More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 25 2004
Offset changed by Andrew Howroyd, Sep 17 2024
STATUS
approved