login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A331261 List of pairs of numbers having certain properties (see Comments). 0
0, 1, 4, 5, 24, 25, 144, 145, 840, 841, 4900, 4901, 28560, 28561, 166464, 166465, 970224, 970225, 5654884, 5654885, 32959080, 32959081, 192099600, 192099601, 1119638520, 1119638521, 6525731524, 6525731525, 38034750624, 38034750625, 221682772224, 221682772225 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

List of pairs of numbers with following properties:

(1) The numbers in each pair are consecutive.

(2) At least one integer is a square.

(3) The sum of each pair is another square.

(4) The position of the square term oscillates between left and right.

(5) The triple formed by the pair and the square root of their sum is a Pythagorean triple.

LINKS

Table of n, a(n) for n=1..32.

PROG

(Python)

# a Python 3.7 program to arrive at Pell-Fermat type Pythagorean triples below a given/entered number.

import math

number = None

# Taking the input from user

number = 10000000

squareList = []

subPythagoreanTriple= []

needed = 1.0

while(needed <= number):

    root = math.sqrt(needed)

    if int(root + 0.5) ** 2 == needed:

        squareList.append(needed)

        flag = True

    else:

        #print(number, "is not a perfect square")

        pass

        flag = None

    needed = needed + 1

def checkSubPythagoreanTriple():

    for i in squareList:

        SPTless = i-1

        SPTmore = i+1

        firstSide = 2*i - 1

        secondSide = 2*i + 1

        firstSideRoot = math.sqrt(firstSide)

        secondSideRoot = math.sqrt(secondSide)

        if int(firstSideRoot + 0.5) ** 2 == firstSide or int(secondSideRoot + 0.5) ** 2 == secondSide :

            if(i%2 == 1):

                subPythagoreanTriple.append(int(i-1))

                subPythagoreanTriple.append(int(i))

            else:

                subPythagoreanTriple.append(int(i))

                subPythagoreanTriple.append(int(i+1))

        else:

            pass

def main():

    checkSubPythagoreanTriple()

main()

print(str(subPythagoreanTriple))

(MAGMA) a:=[0, 1]; for k in [2..1000000] do if IsSquare(2*k*k+1) then a:=a cat [k^2, k^2+1]; else if IsSquare(2*k*k-1) then a:=a cat [k^2-1, k^2]; end if; end if; end for; a; // Marius A. Burtea, Jan 21 2020

CROSSREFS

Sequence in context: A010302 A338422 A171885 * A063986 A039583 A042123

Adjacent sequences:  A331258 A331259 A331260 * A331262 A331263 A331264

KEYWORD

nonn

AUTHOR

Chandrasekhar Karri, Jan 13 2020

EXTENSIONS

More terms from Marius A. Burtea, Jan 13 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 10 04:34 EDT 2021. Contains 343748 sequences. (Running on oeis4.)