login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A127349
a(n) = Sum_{i=n..n+1} Sum_{j=i+1..n+2} Sum_{k=j+1..n+3} prime(i)*prime(j)*prime(k).
8
247, 886, 2556, 6288, 12900, 22392, 40808, 63978, 105000, 161142, 216232, 294168, 385544, 507782, 658820, 858000, 1067502, 1251952, 1518910, 1783854, 2114748, 2618148, 3147710, 3696090, 4239528, 4626300, 5033232, 5898936, 6871200
OFFSET
1,1
COMMENTS
a(n) = absolute value of the coefficient of x^1 of the polynomial Product_{j=0..3} (x - prime(n+j)) of degree 4; the roots of this polynomial are prime(n), ..., prime(n+3); cf. Vieta's formulas.
All terms with exception of the first one are even.
Arithmetic derivative (see A003415) of prime(n)*prime(n+1)*prime(n+2)*prime(n+3). - Giorgio Balzarotti, May 26 2011
LINKS
Eric Weisstein's World of Mathematics, Vieta's Formulas
FORMULA
a(n) = A046302(n)*Sum_{i=n..n+3} 1/prime(i). - Robert Israel, Feb 11 2018
MAPLE
P := select(isprime, [2, seq(i, i = 1 .. 1000, 2)]):
f := L) -> convert(L, `*`)*add(1/t, t = L):
seq(f(P[i..i+3]), i=1..nops(P)-3); # Robert Israel, Feb 11 2018
MATHEMATICA
Table[Prime[n] Prime[n+1] Prime[n+2] + Prime[n] Prime[n+2] Prime[n+3] + Prime[n] Prime[n+1] Prime[n+3] + Prime[n+1] Prime[n+2] Prime[n+3], {n, 100}]
PROG
(PARI) {m=29; h=3; for(n=1, m, print1(sum(i=n, n+h-2, sum(j=i+1, n+h-1, sum(k=j+1, n+h, prime(i)*prime(j)*prime(k)))), ", "))} \\ Klaus Brockhaus, Jan 21 2007
(PARI) {m=29; k=3; for(n=1, m, print1(abs(polcoeff(prod(j=0, k, (x-prime(n+j))), 1)), ", "))} \\ Klaus Brockhaus, Jan 21 2007
(Magma) [NthPrime(n)*NthPrime(n+1)*NthPrime(n+2) + NthPrime(n)*NthPrime(n+2)*NthPrime(n+3) + NthPrime(n)*NthPrime(n+1)* NthPrime(n+3) + NthPrime(n+1)*NthPrime(n+2)*NthPrime(n+3): n in [1..30]]; // Vincenzo Librandi, Feb 12 2018
KEYWORD
nonn
AUTHOR
Artur Jasinski, Jan 11 2007
EXTENSIONS
Edited by Klaus Brockhaus, Jan 21 2007
STATUS
approved