login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A127348
Coefficient of x^2 in the polynomial (x-p(n))*(x-p(n+1))*(x-p(n+2))*(x-p(n+3)), where p(k) is the k-th prime.
7
101, 236, 466, 838, 1330, 1918, 2862, 3856, 5350, 7096, 8622, 10558, 12654, 15228, 18090, 21550, 24916, 27702, 31500, 35068, 39298, 45322, 51240, 56980, 62398, 66130, 69958, 77854, 86230, 96618, 106888, 115842, 124342, 133122, 144090, 152568, 163282, 174348
OFFSET
1,1
LINKS
Eric Weisstein's World of Mathematics, Vieta's Formulas
FORMULA
a(n) = p(n)*p(n+1) + p(n)*p(n+2) + p(n)*p(n+3) + p(n+1)*p(n+2) + p(n+1)*p(n+3) + p(n+2)*p(n+3), where p(k) is the k-th prime (by Viete's formula relating the zeros and the coefficients of a polynomial). - Emeric Deutsch, Jan 20 2007
EXAMPLE
a(1)=101 because (x-2)*(x-3)*(x-5)*(x-7) = x^4 - 17x^3 + 101x^2 - 247x + 210.
MAPLE
a:=n->coeff(expand((x-ithprime(n))*(x-ithprime(n+1))*(x-ithprime(n+2))*(x-ithprime(n+3))), x, 2): seq(a(n), n=1..45); # Emeric Deutsch, Jan 20 2007
MATHEMATICA
Table[Prime[x] Prime[x + 1] + Prime[x] Prime[x + 2] + Prime[x] Prime[x + 3] + Prime[x + 1] Prime[x + 2] + Prime[x + 1] Prime[x + 3] + Prime[x + 2] Prime[x + 3], {x, 1, 100}]
Total[Times@@@Subsets[#, {2}]]&/@Partition[Prime[Range[40]], 4, 1] (* Harvey P. Dale, Apr 15 2019 *)
PROG
(PARI) {m=35; k=3; for(n=1, m, print1(sum(i=n, n+k-1, sum(j=i+1, n+k, prime(i)*prime(j))), ", "))} \\ Klaus Brockhaus, Jan 21 2007
(PARI) {m=35; k=3; for(n=1, m, print1(abs(polcoeff(prod(j=0, k, (x-prime(n+j))), 2)), ", "))} \\ Klaus Brockhaus, Jan 21 2007
KEYWORD
nonn
AUTHOR
Artur Jasinski, Jan 11 2007
EXTENSIONS
Edited by Emeric Deutsch and Klaus Brockhaus, Jan 20 2007
STATUS
approved