login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficient of x^2 in the polynomial (x-p(n))*(x-p(n+1))*(x-p(n+2))*(x-p(n+3)), where p(k) is the k-th prime.
7

%I #21 Sep 20 2024 17:07:51

%S 101,236,466,838,1330,1918,2862,3856,5350,7096,8622,10558,12654,15228,

%T 18090,21550,24916,27702,31500,35068,39298,45322,51240,56980,62398,

%U 66130,69958,77854,86230,96618,106888,115842,124342,133122,144090,152568,163282,174348

%N Coefficient of x^2 in the polynomial (x-p(n))*(x-p(n+1))*(x-p(n+2))*(x-p(n+3)), where p(k) is the k-th prime.

%H Harvey P. Dale, <a href="/A127348/b127348.txt">Table of n, a(n) for n = 1..1000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/VietasFormulas.html">Vieta's Formulas</a>

%F a(n) = p(n)*p(n+1) + p(n)*p(n+2) + p(n)*p(n+3) + p(n+1)*p(n+2) + p(n+1)*p(n+3) + p(n+2)*p(n+3), where p(k) is the k-th prime (by Viete's formula relating the zeros and the coefficients of a polynomial). - _Emeric Deutsch_, Jan 20 2007

%e a(1)=101 because (x-2)*(x-3)*(x-5)*(x-7) = x^4 - 17x^3 + 101x^2 - 247x + 210.

%p a:=n->coeff(expand((x-ithprime(n))*(x-ithprime(n+1))*(x-ithprime(n+2))*(x-ithprime(n+3))),x,2): seq(a(n),n=1..45); # _Emeric Deutsch_, Jan 20 2007

%t Table[Prime[x] Prime[x + 1] + Prime[x] Prime[x + 2] + Prime[x] Prime[x + 3] + Prime[x + 1] Prime[x + 2] + Prime[x + 1] Prime[x + 3] + Prime[x + 2] Prime[x + 3], {x, 1, 100}]

%t Total[Times@@@Subsets[#,{2}]]&/@Partition[Prime[Range[40]],4,1] (* _Harvey P. Dale_, Apr 15 2019 *)

%o (PARI) {m=35;k=3;for(n=1,m,print1(sum(i=n,n+k-1,sum(j=i+1,n+k,prime(i)*prime(j))),","))} \\ _Klaus Brockhaus_, Jan 21 2007

%o (PARI) {m=35;k=3;for(n=1,m,print1(abs(polcoeff(prod(j=0,k,(x-prime(n+j))),2)),","))} \\ _Klaus Brockhaus_, Jan 21 2007

%Y Cf. A127345, A127346, A127347, A127349, A127350, A127351, A070934, A006094.

%K nonn

%O 1,1

%A _Artur Jasinski_, Jan 11 2007

%E Edited by _Emeric Deutsch_ and _Klaus Brockhaus_, Jan 20 2007