login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117713
a(1)=1, a(2)=3, a(3)=8; for n>=4, a(n) = 10*a(n-3) + 8 (if a(n-3) is odd) or + 9 (if a(n-3) is even).
1
1, 3, 8, 18, 38, 89, 189, 389, 898, 1898, 3898, 8989, 18989, 38989, 89898, 189898, 389898, 898989, 1898989, 3898989, 8989898, 18989898, 38989898, 89898989, 189898989, 389898989, 898989898, 1898989898, 3898989898, 8989898989, 18989898989, 38989898989, 89898989898
OFFSET
1,2
COMMENTS
From a puzzle (1,3,8,18,?,89,189) given on a civil service test.
Another possibility is that 1,3,8,18,?,89,189,... is an erroneous version of A117727. - Hugo van der Sanden, Apr 14 2006
FORMULA
From G. C. Greubel, Jul 23 2023: (Start)
a(n) = (1/198)*(2*(89*b(n) + 188*b(n-1) + 386*b(n-2)) + 6*(A010892(n) + A010892(n-1)) - 187 + 3*(-1)^n), where b(n) = 10^floor(n/3)*floor((n-1 mod 3)/2).
G.f.: x*(1 + 2*x + 5*x^2 + x^3 + 2*x^4 + 6*x^5)/((1-x^2)*(1-x+x^2)*(1-10*x^3)). (End)
MAPLE
f:=proc(n) option remember; local t1; if n=1 then RETURN(1); fi; if n=2 then RETURN(3); fi; if n=3 then RETURN(8); fi; t1:=10*f(n-3)+8; if f(n-3) mod 2 = 0 then t1:=t1+1; fi; RETURN(t1); end;
MATHEMATICA
a[n_]:= a[n]= If[n<4, Fibonacci[2*n], 10*a[n-3] +If[Mod[a[n-3], 2]==1, 8, 9]];
Table[a[n], {n, 40}] (* G. C. Greubel, Jul 23 2023 *)
PROG
(Magma) I:=[1, 3, 8, 18, 38, 89, 189]; [n le 7 select I[n] else Self(n-1) +9*Self(n-3) -9*Self(n-4) +10*Self(n-6) -10*Self(n-7): n in [1..40]]; // G. C. Greubel, Jul 23 2023
(SageMath)
@CachedFunction
def a(n): # a = A117713
if (n<4): return fibonacci(2*n)
elif (a(n-3)%2)==1: return 10*a(n-3) + 8
else: return 10*a(n-3) + 9
[a(n) for n in range(1, 41)] # G. C. Greubel, Jul 23 2023
CROSSREFS
Sequence in context: A172265 A258272 A117727 * A128552 A238361 A178420
KEYWORD
nonn,easy
AUTHOR
Louis Ciotti (lciotti(AT)twcny.rr.com), Apr 13 2006
EXTENSIONS
Solution proposed by Mohammed BOUAYOUN (mohammed.bouayoun(AT)yahoo.fr), Apr 14 2006
STATUS
approved