Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Dec 29 2023 12:53:45
%S 1,3,8,18,38,89,189,389,898,1898,3898,8989,18989,38989,89898,189898,
%T 389898,898989,1898989,3898989,8989898,18989898,38989898,89898989,
%U 189898989,389898989,898989898,1898989898,3898989898,8989898989,18989898989,38989898989,89898989898
%N a(1)=1, a(2)=3, a(3)=8; for n>=4, a(n) = 10*a(n-3) + 8 (if a(n-3) is odd) or + 9 (if a(n-3) is even).
%C From a puzzle (1,3,8,18,?,89,189) given on a civil service test.
%C Another possibility is that 1,3,8,18,?,89,189,... is an erroneous version of A117727. - _Hugo van der Sanden_, Apr 14 2006
%H G. C. Greubel, <a href="/A117713/b117713.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,9,-9,0,10,-10).
%F From _G. C. Greubel_, Jul 23 2023: (Start)
%F a(n) = (1/198)*(2*(89*b(n) + 188*b(n-1) + 386*b(n-2)) + 6*(A010892(n) + A010892(n-1)) - 187 + 3*(-1)^n), where b(n) = 10^floor(n/3)*floor((n-1 mod 3)/2).
%F G.f.: x*(1 + 2*x + 5*x^2 + x^3 + 2*x^4 + 6*x^5)/((1-x^2)*(1-x+x^2)*(1-10*x^3)). (End)
%p f:=proc(n) option remember; local t1; if n=1 then RETURN(1); fi; if n=2 then RETURN(3); fi; if n=3 then RETURN(8); fi; t1:=10*f(n-3)+8; if f(n-3) mod 2 = 0 then t1:=t1+1; fi; RETURN(t1); end;
%t a[n_]:= a[n]= If[n<4, Fibonacci[2*n], 10*a[n-3] +If[Mod[a[n-3], 2]==1, 8, 9]];
%t Table[a[n], {n, 40}] (* _G. C. Greubel_, Jul 23 2023 *)
%o (Magma) I:=[1,3,8,18,38,89,189]; [n le 7 select I[n] else Self(n-1) +9*Self(n-3) -9*Self(n-4) +10*Self(n-6) -10*Self(n-7): n in [1..40]]; // _G. C. Greubel_, Jul 23 2023
%o (SageMath)
%o @CachedFunction
%o def a(n): # a = A117713
%o if (n<4): return fibonacci(2*n)
%o elif (a(n-3)%2)==1: return 10*a(n-3) + 8
%o else: return 10*a(n-3) + 9
%o [a(n) for n in range(1,41)] # _G. C. Greubel_, Jul 23 2023
%Y Cf. A010892, A117727.
%K nonn,easy
%O 1,2
%A Louis Ciotti (lciotti(AT)twcny.rr.com), Apr 13 2006
%E Solution proposed by Mohammed BOUAYOUN (mohammed.bouayoun(AT)yahoo.fr), Apr 14 2006