login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A238361
Number of length n binary words that contain 111 but do not contain 000 (as contiguous subwords).
1
0, 0, 0, 1, 3, 8, 18, 39, 81, 164, 326, 639, 1239, 2382, 4548, 8635, 16319, 30722, 57650, 107885, 201425, 375322, 698162, 1296801, 2405707, 4457984, 8253228, 15266969, 28220967, 52134000, 96257558, 177640983, 327696621, 604287700, 1113981922, 2053015399
OFFSET
0,5
COMMENTS
For n>=1, a(n) = A000073(n+3) - 2*A000045(n+1).
FORMULA
G.f.: (x^3*(1 + x + x^2))/((1 - x - x^2)*(1 - x - x^2 - x^3)).
a(n) = 2*a(n-1) + a(n-2) - a(n-3) - 2*a(n-4) - a(n-5) for n>5. - Colin Barker, Nov 22 2019
EXAMPLE
There are a(6) = 18 such binary words:
01: 001110
02: 001111
03: 010111
04: 011100
05: 011101
06: 011110
07: 011111
08: 100111
09: 101110
10: 101111
11: 110111
12: 111001
13: 111010
14: 111011
15: 111100
16: 111101
17: 111110
18: 111111
MATHEMATICA
nn=30; CoefficientList[Series[(x^3+x^4+x^5)/(1-2x-x^2+x^3+2x^4+x^5), {x, 0, nn}], x]
PROG
(PARI) concat([0, 0, 0], Vec(x^3*(1 + x + x^2) / ((1 - x - x^2)*(1 - x - x^2 - x^3)) + O(x^40))) \\ Colin Barker, Nov 22 2019
CROSSREFS
Sequence in context: A117727 A117713 A128552 * A178420 A011377 A036385
KEYWORD
nonn,easy
AUTHOR
Geoffrey Critzer, Mar 08 2014
STATUS
approved