login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238359
Number of rooted maps with n edges of genus 9.
14
11665426077721040625, 3498878057690404966500, 540996834819906946713375, 57494374008560749302297480, 4724172886681078698955547790, 320061005837218582787265273000, 18618409220753939214291224549409, 956146512935178711199035220384800, 44232688287025023758415781081779828, 1871678026675570344184400604255444240
OFFSET
18,1
LINKS
Sean R. Carrell and Guillaume Chapuy, Simple recurrence formulas to count maps on orientable surfaces, arXiv:1402.6300 [math.CO], (19-March-2014).
Steven R. Finch, An exceptional convolutional recurrence, arXiv:2408.12440 [math.CO], 22 Aug 2024.
MATHEMATICA
T[0, 0] = 1; T[n_, g_] /; g < 0 || g > n/2 = 0; T[n_, g_] := T[n, g] = ((4 n - 2)/3 T[n - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 T[n - 2, g - 1] + 1/2 Sum[(2 k - 1) (2 (n - k) - 1) T[k - 1, i] T[n - k - 1, g - i], {k, 1, n - 1}, {i, 0, g}])/((n + 1)/6);
a[n_] := T[n, 9];
Table[a[n], {n, 18, 30}] (* Jean-François Alcover, Jul 20 2018 *)
PROG
(PARI) \\ see A238396
CROSSREFS
Rooted maps with n edges of genus g for 0 <= g <= 10: A000168, A006300, A006301, A104742, A215402, A238355, A238356, A238357, A238358, this sequence, A238360.
Sequence in context: A095435 A155960 A266961 * A253389 A257307 A115540
KEYWORD
nonn,changed
AUTHOR
Joerg Arndt, Feb 26 2014
STATUS
approved