login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A006301
Number of rooted genus-2 maps with n edges.
(Formerly M5120)
15
0, 0, 0, 0, 21, 966, 27954, 650076, 13271982, 248371380, 4366441128, 73231116024, 1183803697278, 18579191525700, 284601154513452, 4272100949982600, 63034617139799916, 916440476048146056, 13154166812674577412, 186700695099591735024, 2623742783421329300190, 36548087103760045010148, 505099724454854883618924
OFFSET
0,5
REFERENCES
E. R. Canfield, Calculating the number of rooted maps on a surface, Congr. Numerantium, 76 (1990), 21-34.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
T. R. S. Walsh, Combinatorial Enumeration of Non-Planar Maps. Ph.D. Dissertation, Univ. of Toronto, 1971.
LINKS
T. D. Noe, Table of n, a(n) for n=0..30 (from Mednykh and Nedela)
E. A. Bender and E. R. Canfield, The number of rooted maps on an orientable surface, J. Combin. Theory, B 53 (1991), 293-299.
Sean R. Carrell, Guillaume Chapuy, Simple recurrence formulas to count maps on orientable surfaces, arXiv:1402.6300 [math.CO], (19-March-2014).
S. R. Finch, An exceptional convolutional recurrence, arXiv:2408.12440 [math.CO], 22 Aug 2024.
T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus, J. Comb. Thy B13 (1972), 122-141 and 192-218.
MATHEMATICA
T[0, 0] = 1; T[n_, g_] /; g < 0 || g > n/2 = 0; T[n_, g_] := T[n, g] = ((4 n - 2)/3 T[n - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 T[n - 2, g - 1] + 1/2 Sum[(2 k - 1) (2 (n - k) - 1) T[k - 1, i] T[n - k - 1, g - i], {k, 1, n - 1}, {i, 0, g}])/((n + 1)/6);
a[n_] := T[n, 2];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 20 2018 *)
PROG
(PARI)
A005159_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-12*x))/(6*x);
A006301_ser(N) = {
my(y=A005159_ser(N+1));
-y*(y-1)^4*(4*y^4 - 16*y^3 + 153*y^2 - 148*y + 196)/(9*(y-2)^7*(y+2)^4);
};
concat([0, 0, 0, 0], Vec(A006301_ser(19))) \\ Gheorghe Coserea, Jun 02 2017
CROSSREFS
Column k=2 of A238396.
Rooted maps with n edges of genus g for 0 <= g <= 10: A000168, A006300, this sequence, A104742, A215402, A238355, A238356, A238357, A238358, A238359, A238360.
Sequence in context: A012793 A015305 A101732 * A220384 A184133 A004704
KEYWORD
nonn
EXTENSIONS
More terms from Joerg Arndt, Feb 26 2014
STATUS
approved