login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A006304
Coefficients of the '2nd-order' mock theta function A(q).
(Formerly M0685)
4
0, 1, 2, 3, 5, 8, 11, 16, 23, 31, 43, 58, 76, 101, 132, 170, 219, 280, 354, 447, 562, 699, 869, 1076, 1323, 1625, 1987, 2418, 2937, 3556, 4289, 5162, 6196, 7413, 8853, 10547, 12530, 14860, 17586, 20763, 24474, 28792, 33802, 39624, 46368, 54163
OFFSET
0,3
COMMENTS
The "second-order" mock theta function A(q). - Jeremy Lovejoy, Dec 19 2008
REFERENCES
Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 8.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)
G. E. Andrews, Mordell integrals and Ramanujan's "Lost" Notebook, pp. 10-48 of Analytic Number Theory (Philadelphia 1980), Lect. Notes Math. 899 (1981).
R. J. McIntosh, Second order mock theta functions, Canad. Math. Bull. 50 (2007), 284-290. [From Jeremy Lovejoy, Dec 19 2008]
FORMULA
G.f.: Sum_{n>=0} q^(n+1) (1+q^2)(1+q^4)...(1+q^(2n))/((1-q)(1-q^3)...(1-q^(2n+1))).
G.f.: Sum_{n>=0} q^(n+1)^2 (1+q)(1+q^3)...(1+q^(2n-1))/((1-q)(1-q^3)...(1-q^(2n+1)))^2.
a(n) ~ exp(Pi*sqrt(n/2)) / (8*sqrt(n)). - Vaclav Kotesovec, Jun 11 2019
EXAMPLE
G.f. = x + 2*x^2 + 3*x^3 + 5*x^4 + 8*x^5 + 11*x^6 + 16*x^7 + 23*x^8 + ...
MATHEMATICA
Series[Sum[q^(n+1)^2 Product[1+q^(2k-1), {k, 1, n}]/Product[1-q^(2k-1), {k, 1, n+1}]^2, {n, 0, 9}], {q, 0, 100}]
a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ x^(k + 1)^2 QPochhammer[ -x, x^2, k] / QPochhammer[ x, x^2, k + 1]^2, {k, 0, Sqrt[ n] - 1}], {x, 0, n}]]; (* Michael Somos, Apr 08 2015 *)
nmax = 100; CoefficientList[Series[Sum[x^(k+1)^2 * Product[1 + x^(2*j - 1), {j, 1, k}] / Product[1 - x^(2*j - 1), {j, 1, k+1}]^2, {k, 0, Floor[Sqrt[nmax]]}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 11 2019 *)
CROSSREFS
Sequence in context: A175831 A070228 A173599 * A344650 A238591 A039847
KEYWORD
nonn,easy,nice
EXTENSIONS
Corrected and extended by Dean Hickerson, Dec 13 1999
STATUS
approved