login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A006307
Number of ways writing 2^n as unordered sums of 2 primes.
(Formerly M0344)
10
0, 0, 1, 1, 2, 2, 5, 3, 8, 11, 22, 25, 53, 76, 151, 244, 435, 749, 1314, 2367, 4239, 7471, 13705, 24928, 45746, 83467, 153850, 283746, 525236, 975685, 1817111, 3390038, 6341424, 11891654, 22336060, 42034097, 79287664, 149711134, 283277225, 536710100, 1018369893
OFFSET
0,5
REFERENCES
Bohman, Jan and Froberg, Carl-Erik; Numerical results on the Goldbach conjecture. Nordisk Tidskr. Informationsbehandling (BIT) 15 (1975), no. 3, 239-243.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
a(n) = A061358(2^n).
EXAMPLE
n = 5: 2^5 = 32 = 3+29 = 13+19 so a(5) = 2.
MAPLE
a:=proc(n) local c, k; c:=0: for k from 1 to floor((n-1)/2) do if isprime(2*k+1)=true and isprime(2*n-2*k-1)=true then c:=c+1 else c:=c fi od end: 0, 0, 1, seq(a(2*2^n), n=1..15); # Emeric Deutsch, Sep 22 2004
PROG
(PARI) a(n)=my(N=2^n, s); forprime(q=2, N\2, s+=isprime(N-q)); s \\ Charles R Greathouse IV, Mar 02 2015
CROSSREFS
KEYWORD
nonn
EXTENSIONS
More terms from David W. Wilson
a(28)-a(35) from Ray Chandler, Feb 21 2004
a(36)=79287664 and a(37)=149711134 from Ray Chandler, Apr 10 2005
a(38)-a(40) from Russ Cox, Nov 04 2006
STATUS
approved