Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M0344 #29 Dec 26 2021 21:32:37
%S 0,0,1,1,2,2,5,3,8,11,22,25,53,76,151,244,435,749,1314,2367,4239,7471,
%T 13705,24928,45746,83467,153850,283746,525236,975685,1817111,3390038,
%U 6341424,11891654,22336060,42034097,79287664,149711134,283277225,536710100,1018369893
%N Number of ways writing 2^n as unordered sums of 2 primes.
%D Bohman, Jan and Froberg, Carl-Erik; Numerical results on the Goldbach conjecture. Nordisk Tidskr. Informationsbehandling (BIT) 15 (1975), no. 3, 239-243.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H <a href="/index/Go#Goldbach">Index entries for sequences related to Goldbach conjecture</a>
%F a(n) = A061358(2^n).
%e n = 5: 2^5 = 32 = 3+29 = 13+19 so a(5) = 2.
%p a:=proc(n) local c,k; c:=0: for k from 1 to floor((n-1)/2) do if isprime(2*k+1)=true and isprime(2*n-2*k-1)=true then c:=c+1 else c:=c fi od end: 0,0,1,seq(a(2*2^n),n=1..15); # _Emeric Deutsch_, Sep 22 2004
%o (PARI) a(n)=my(N=2^n,s); forprime(q=2, N\2, s+=isprime(N-q)); s \\ _Charles R Greathouse IV_, Mar 02 2015
%Y Cf. A061358, A062602, A062610.
%K nonn
%O 0,5
%A _N. J. A. Sloane_
%E More terms from _David W. Wilson_
%E a(28)-a(35) from _Ray Chandler_, Feb 21 2004
%E a(36)=79287664 and a(37)=149711134 from _Ray Chandler_, Apr 10 2005
%E a(38)-a(40) from _Russ Cox_, Nov 04 2006