The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A006306 Coefficients of the '2nd-order' mock theta function mu(q). (Formerly M0163) 4
 1, -1, 1, 2, -1, -4, 1, 5, -2, -5, 4, 7, -4, -11, 3, 13, -6, -14, 9, 18, -7, -24, 8, 29, -14, -32, 17, 38, -18, -50, 20, 58, -25, -63, 33, 77, -35, -94, 36, 108, -48, -122, 60, 141, -63, -170, 70, 195, -87, -215, 101, 250, -110, -294, 124, 333, -146, -371, 173, 424, -190, -492, 206, 554, -245, -617, 283 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Contribution from Jeremy Lovejoy, Dec 19 2008: (Start) Coefficients of the "second-order" mock theta function mu(q). |a(n)| is the number of partitions of n without repeated odd parts whose M2-rank is even minus the number of partitions of n without repeated odd parts whose M2-rank is odd. (End) REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n = 0..1000 G. E. Andrews, Mordell integrals and Ramanujan's "Lost" Notebook, pp. 10-48 of Analytic Number Theory (Philadelphia 1980), Lect. Notes Math. 899 (1981). K. Bringmann, K. Ono and R. Rhoades, Eulerian series as modular forms, J. Amer. Math. Soc. 21 (2008), 1085-1104. [From Jeremy Lovejoy, Dec 19 2008] J. Lovejoy and R. Osburn, M_2-rank differences for partitions without repeated odd parts [From Jeremy Lovejoy, Dec 19 2008] R. J. McIntosh, Second order mock theta functions, Canad. Math. Bull. 50 (2007), 284-290. [From Jeremy Lovejoy, Dec 19 2008] FORMULA G.f.: Sum_{n >= 0} (-1)^n q^n^2 (1-q)(1-q^3)...(1-q^(2n-1))/((1+q^2)^2 (1+q^4)^2 ... (1+q^(2n))^2). EXAMPLE G.f. = 1 - x + x^2 + 2*x^3 - x^4 - 4*x^5 + x^6 + x*x^7 - 2*x^8 - 5*x^9 + ... MATHEMATICA CoefficientList[Series[Sum[(-q)^n^2 Product[(1-q^(2k-1))/(1+q^(2k))^2, {k, 1, n}], {n, 0, 10}], {q, 0, 100}], q] a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ (-1)^k x^k^2 QPochhammer[ x, x^2, k] / QPochhammer[- x^2, x^2, k]^2, {k, 0, Sqrt[ n]}], {x, 0, n}]]; (* Michael Somos, Jul 09 2015 *) CROSSREFS Cf. A006304, A006305. Sequence in context: A282738 A093890 A325609 * A322100 A277100 A337363 Adjacent sequences: A006303 A006304 A006305 * A006307 A006308 A006309 KEYWORD sign,easy,nice AUTHOR N. J. A. Sloane EXTENSIONS Corrected and extended by Dean Hickerson, Dec 13 1999 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 23 03:14 EDT 2023. Contains 365532 sequences. (Running on oeis4.)