OFFSET
0,4
COMMENTS
Contribution from Jeremy Lovejoy, Dec 19 2008: (Start)
Coefficients of the "second-order" mock theta function mu(q).
|a(n)| is the number of partitions of n without repeated odd parts whose M2-rank is even minus the number of partitions of n without repeated odd parts whose M2-rank is odd. (End)
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. D. Noe, Table of n, a(n) for n = 0..1000
G. E. Andrews, Mordell integrals and Ramanujan's "Lost" Notebook, pp. 10-48 of Analytic Number Theory (Philadelphia 1980), Lect. Notes Math. 899 (1981).
K. Bringmann, K. Ono and R. Rhoades, Eulerian series as modular forms, J. Amer. Math. Soc. 21 (2008), 1085-1104. [From Jeremy Lovejoy, Dec 19 2008]
J. Lovejoy and R. Osburn, M_2-rank differences for partitions without repeated odd parts [From Jeremy Lovejoy, Dec 19 2008]
R. J. McIntosh, Second order mock theta functions, Canad. Math. Bull. 50 (2007), 284-290. [From Jeremy Lovejoy, Dec 19 2008]
FORMULA
G.f.: Sum_{n >= 0} (-1)^n q^n^2 (1-q)(1-q^3)...(1-q^(2n-1))/((1+q^2)^2 (1+q^4)^2 ... (1+q^(2n))^2).
EXAMPLE
G.f. = 1 - x + x^2 + 2*x^3 - x^4 - 4*x^5 + x^6 + x*x^7 - 2*x^8 - 5*x^9 + ...
MATHEMATICA
CoefficientList[Series[Sum[(-q)^n^2 Product[(1-q^(2k-1))/(1+q^(2k))^2, {k, 1, n}], {n, 0, 10}], {q, 0, 100}], q]
a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ (-1)^k x^k^2 QPochhammer[ x, x^2, k] / QPochhammer[- x^2, x^2, k]^2, {k, 0, Sqrt[ n]}], {x, 0, n}]]; (* Michael Somos, Jul 09 2015 *)
CROSSREFS
KEYWORD
sign,easy,nice
AUTHOR
EXTENSIONS
Corrected and extended by Dean Hickerson, Dec 13 1999
STATUS
approved