login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A006306
Coefficients of the '2nd-order' mock theta function mu(q).
(Formerly M0163)
4
1, -1, 1, 2, -1, -4, 1, 5, -2, -5, 4, 7, -4, -11, 3, 13, -6, -14, 9, 18, -7, -24, 8, 29, -14, -32, 17, 38, -18, -50, 20, 58, -25, -63, 33, 77, -35, -94, 36, 108, -48, -122, 60, 141, -63, -170, 70, 195, -87, -215, 101, 250, -110, -294, 124, 333, -146, -371, 173, 424, -190, -492, 206, 554, -245, -617, 283
OFFSET
0,4
COMMENTS
Contribution from Jeremy Lovejoy, Dec 19 2008: (Start)
Coefficients of the "second-order" mock theta function mu(q).
|a(n)| is the number of partitions of n without repeated odd parts whose M2-rank is even minus the number of partitions of n without repeated odd parts whose M2-rank is odd. (End)
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
G. E. Andrews, Mordell integrals and Ramanujan's "Lost" Notebook, pp. 10-48 of Analytic Number Theory (Philadelphia 1980), Lect. Notes Math. 899 (1981).
K. Bringmann, K. Ono and R. Rhoades, Eulerian series as modular forms, J. Amer. Math. Soc. 21 (2008), 1085-1104. [From Jeremy Lovejoy, Dec 19 2008]
R. J. McIntosh, Second order mock theta functions, Canad. Math. Bull. 50 (2007), 284-290. [From Jeremy Lovejoy, Dec 19 2008]
FORMULA
G.f.: Sum_{n >= 0} (-1)^n q^n^2 (1-q)(1-q^3)...(1-q^(2n-1))/((1+q^2)^2 (1+q^4)^2 ... (1+q^(2n))^2).
EXAMPLE
G.f. = 1 - x + x^2 + 2*x^3 - x^4 - 4*x^5 + x^6 + x*x^7 - 2*x^8 - 5*x^9 + ...
MATHEMATICA
CoefficientList[Series[Sum[(-q)^n^2 Product[(1-q^(2k-1))/(1+q^(2k))^2, {k, 1, n}], {n, 0, 10}], {q, 0, 100}], q]
a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ (-1)^k x^k^2 QPochhammer[ x, x^2, k] / QPochhammer[- x^2, x^2, k]^2, {k, 0, Sqrt[ n]}], {x, 0, n}]]; (* Michael Somos, Jul 09 2015 *)
CROSSREFS
Sequence in context: A282738 A093890 A325609 * A322100 A277100 A337363
KEYWORD
sign,easy,nice
EXTENSIONS
Corrected and extended by Dean Hickerson, Dec 13 1999
STATUS
approved