login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficients of the '2nd-order' mock theta function A(q).
(Formerly M0685)
4

%I M0685 #31 Dec 18 2021 23:39:43

%S 0,1,2,3,5,8,11,16,23,31,43,58,76,101,132,170,219,280,354,447,562,699,

%T 869,1076,1323,1625,1987,2418,2937,3556,4289,5162,6196,7413,8853,

%U 10547,12530,14860,17586,20763,24474,28792,33802,39624,46368,54163

%N Coefficients of the '2nd-order' mock theta function A(q).

%C The "second-order" mock theta function A(q). - _Jeremy Lovejoy_, Dec 19 2008

%D Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 8.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Vaclav Kotesovec, <a href="/A006304/b006304.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from T. D. Noe)

%H G. E. Andrews, <a href="http://dx.doi.org/10.1007/BFb0096452">Mordell integrals and Ramanujan's "Lost" Notebook</a>, pp. 10-48 of Analytic Number Theory (Philadelphia 1980), Lect. Notes Math. 899 (1981).

%H R. J. McIntosh, <a href="http://dx.doi.org/10.4153/CMB-2007-028-9">Second order mock theta functions</a>, Canad. Math. Bull. 50 (2007), 284-290. [From _Jeremy Lovejoy_, Dec 19 2008]

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Mock_modular_form">Mock modular form</a>

%F G.f.: Sum_{n>=0} q^(n+1) (1+q^2)(1+q^4)...(1+q^(2n))/((1-q)(1-q^3)...(1-q^(2n+1))).

%F G.f.: Sum_{n>=0} q^(n+1)^2 (1+q)(1+q^3)...(1+q^(2n-1))/((1-q)(1-q^3)...(1-q^(2n+1)))^2.

%F a(n) ~ exp(Pi*sqrt(n/2)) / (8*sqrt(n)). - _Vaclav Kotesovec_, Jun 11 2019

%e G.f. = x + 2*x^2 + 3*x^3 + 5*x^4 + 8*x^5 + 11*x^6 + 16*x^7 + 23*x^8 + ...

%t Series[Sum[q^(n+1)^2 Product[1+q^(2k-1), {k, 1, n}]/Product[1-q^(2k-1), {k, 1, n+1}]^2, {n, 0, 9}], {q, 0, 100}]

%t a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ x^(k + 1)^2 QPochhammer[ -x, x^2, k] / QPochhammer[ x, x^2, k + 1]^2, {k, 0, Sqrt[ n] - 1}], {x, 0, n}]]; (* _Michael Somos_, Apr 08 2015 *)

%t nmax = 100; CoefficientList[Series[Sum[x^(k+1)^2 * Product[1 + x^(2*j - 1), {j, 1, k}] / Product[1 - x^(2*j - 1), {j, 1, k+1}]^2, {k, 0, Floor[Sqrt[nmax]]}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Jun 11 2019 *)

%Y Cf. A006305, A006306.

%K nonn,easy,nice

%O 0,3

%A _N. J. A. Sloane_

%E Corrected and extended by _Dean Hickerson_, Dec 13 1999