login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238357
Number of genus-7 rooted maps with n edges.
14
14230536445125, 3128879373858000, 360626952084151500, 29001816720933903504, 1828003659229082834100, 96187365300257285300064, 4395215998078319892167640, 179153431308203084149883760, 6641365771586560905099092466, 227189907562197156785567456832, 7252879937219595844346639732688
OFFSET
14,1
LINKS
Sean R. Carrell and Guillaume Chapuy, Simple recurrence formulas to count maps on orientable surfaces, arXiv:1402.6300 [math.CO], (19-March-2014).
Steven R. Finch, An exceptional convolutional recurrence, arXiv:2408.12440 [math.CO], 22 Aug 2024.
MATHEMATICA
T[0, 0] = 1; T[n_, g_] /; g < 0 || g > n/2 = 0; T[n_, g_] := T[n, g] = ((4 n - 2)/3 T[n - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 T[n - 2, g - 1] + 1/2 Sum[(2 k - 1) (2 (n - k) - 1) T[k - 1, i] T[n - k - 1, g - i], {k, 1, n - 1}, {i, 0, g}])/((n + 1)/6);
a[n_] := T[n, 7];
Table[a[n], {n, 14, 30}] (* Jean-François Alcover, Jul 20 2018 *)
PROG
(PARI) \\ see A238396
(PARI)
system("wget http://oeis.org/A238357/a238357.txt");
A005159_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-12*x))/(6*x);
A238357_ser(N) = subst(read("a238357.txt"), 'y, A005159_ser(N+14));
Vec(A238357_ser(11)) \\ Gheorghe Coserea, Jun 03 2017
CROSSREFS
Rooted maps with n edges of genus g for 0 <= g <= 10: A000168, A006300, A006301, A104742, A215402, A238355, A238356, this sequence, A238358, A238359, A238360.
Sequence in context: A172719 A226954 A068747 * A349028 A160935 A159271
KEYWORD
nonn
AUTHOR
Joerg Arndt, Feb 26 2014
STATUS
approved