The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A128552 Column 2 of triangle A128545; a(n) is the coefficient of q^(2n+4) in the central q-binomial coefficient [2n+4,n+2]. 5
 1, 3, 8, 18, 39, 75, 141, 251, 433, 724, 1185, 1892, 2972, 4588, 6981, 10480, 15553, 22821, 33164, 47746, 68163, 96542, 135747, 189550, 262997, 362691, 497339, 678300, 920417, 1242898, 1670688, 2235880, 2979809, 3955422, 5230471, 6891234 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Column 1 of triangle A128552 equals the partitions of n (A000041). a(n) is the number of partitions of the integer 2n+4 into at most n+2 summands each of which is at most n+2. - Geoffrey Critzer, Sep 27 2013 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009, page 45. Shishuo Fu and James Sellers, Enumeration of the degree sequences of line-Hamiltonian multigraphs, INTEGERS 12 (2012), #A24. - From N. J. A. Sloane, Feb 04 2013 FORMULA a(n) = A000041(2*n+4) - 2*Sum_{k=0..n+1} A000041(k), where A000041(n) = number of partitions of n, due to a formula given in the Fu and Sellers paper. - Paul D. Hanna, Feb 06 2013 EXAMPLE a(2) = 8 because we have: 4+4 = 4+3+1 = 4+2+2 = 4+2+1+1 = 3+3+2 = 3+3+1+1 = 3+2+2+1 = 2+2+2+2. - Geoffrey Critzer, Sep 27 2013 MAPLE with(combinat): p:= numbpart: s:= proc(n) s(n):= p(n) +`if`(n>0, s(n-1), 0) end: a:= n-> p(2*n+4) -2*s(n+1): seq(a(n), n=0..40);  # Alois P. Heinz, Sep 27 2013 MATHEMATICA Table[nn=2n; Coefficient[Series[Product[(1-x^(n+i))/(1-x^i), {i, 1, n}], {x, 0, nn}], x^(2n)], {n, 1, 37}] (* Geoffrey Critzer, Sep 27 2013 *) PROG (PARI) {a(n)=polcoeff(prod(j=n+3, 2*n+4, 1-q^j)/prod(j=1, n+2, 1-q^j), 2*n+4, q)} (PARI) {a(n)=numbpart(2*n+4)-2*sum(k=0, n+1, numbpart(k))} \\ Paul D. Hanna, Feb 06 2013 CROSSREFS Cf. A128545; A128553, A128554. Sequence in context: A258272 A117727 A117713 * A238361 A011377 A178420 Adjacent sequences:  A128549 A128550 A128551 * A128553 A128554 A128555 KEYWORD nonn AUTHOR Paul D. Hanna, Mar 10 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 24 01:46 EDT 2022. Contains 353993 sequences. (Running on oeis4.)