login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A116891 a(n) = gcd(n! + 1, n^n + 1). 4
2, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 47, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 79, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 103, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 127, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 191, 1, 1, 1, 199, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Apparently all the values greater than 1 (cf. A116892) are prime numbers and are equal to 2n+1 with only 4 exceptions for n<82000 (cf. A116894).

From Antti Karttunen, Jul 22 2018: (Start)

The first duplicated value > 1 is 157519 = a(43755) = a(78759). Note that 43755 = 15*2917, while 78759 = 27*2917.

It seems that for the long time after a(1) = 2, all other terms > 1 occur only at such positions k that k+1 is not squarefree. However, this turns out to be false as a(208161) = 555097, and 208162 is a squarefree number.

(End)

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..80001

EXAMPLE

a(3) = gcd(3! + 1, 3^3 + 1) = gcd(7,28) = 7.

MATHEMATICA

Table[GCD[n! + 1, n^n + 1], {n, 101}] (* Robert G. Wilson v, Mar 09 2006 *)

PROG

(PARI) A116891(n) = gcd(n!+1, (n^n)+1); \\ Antti Karttunen, Jul 22 2018

CROSSREFS

Cf. A014566, A038507, A067658, A116892, A116893, A116894.

Sequence in context: A063704 A224918 A224508 * A079620 A010254 A178618

Adjacent sequences:  A116888 A116889 A116890 * A116892 A116893 A116894

KEYWORD

easy,nonn

AUTHOR

Giovanni Resta, Mar 01 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 7 23:50 EDT 2022. Contains 355995 sequences. (Running on oeis4.)