login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178618
Triangle T(n,k) with the coefficient [x^k] of the series (1-x)^(n+1) * sum_{j=0..infinity} *binomial(n+3*j,3*j)*x^j, in row n, column k.
2
1, 1, 2, 1, 7, 1, 1, 16, 10, 1, 30, 45, 5, 1, 50, 141, 50, 1, 1, 77, 357, 266, 28, 1, 112, 784, 1016, 266, 8, 1, 156, 1554, 3139, 1554, 156, 1, 1, 210, 2850, 8350, 6765, 1452, 55, 1, 275, 4917, 19855, 24068, 9042, 880, 11
OFFSET
0,3
COMMENTS
Every third row is symmetrical.
Row sums are 3^n.
2*k instead of 3*k in the binomial() gives A034839 with alternating rows of A086645.
EXAMPLE
1;
1, 2;
1, 7, 1;
1, 16, 10;
1, 30, 45, 5;
1, 50, 141, 50, 1;
1, 77, 357, 266, 28;
1, 112, 784, 1016, 266, 8;
1, 156, 1554, 3139, 1554, 156, 1;
1, 210, 2850, 8350, 6765, 1452, 55;
1, 275, 4917, 19855, 24068, 9042, 880, 11;
MAPLE
A178618 := proc(n, k)
(1-x)^(n+1)*add( binomial(n+3*j, 3*j)*x^j, j=0..n+1) ;
coeftayl(%, x=0, k) ;
end proc:
seq(seq(A178618(n, k), k=0..n), n=0..8) ; # R. J. Mathar, Nov 05 2012
MATHEMATICA
p[x_, n_] = (-1)^(n + 1)*(-1 + x)^(n + 1)*Sum[Binomial[n + 3*k, 3*k]*x^k, {k, 0, Infinity}]
Flatten[Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}]]
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, May 30 2010
STATUS
approved