login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178619
Triangle T(n,k) with the coefficient of [x^k] of the series (1-x)^(n+1)* sum_{j>=0} binomial(n + 4*j, 4*j)*x^j in row n, column k.
1
1, 1, 3, 1, 12, 3, 1, 31, 31, 1, 1, 65, 155, 35, 1, 120, 546, 336, 21, 1, 203, 1554, 1918, 413, 7, 1, 322, 3823, 8092, 3823, 322, 1, 1, 486, 8451, 27876, 23607, 4950, 165, 1, 705, 17205, 82885, 112035, 44803, 4455, 55, 1, 990, 32802, 220198, 440484, 291258
OFFSET
0,3
COMMENTS
Every fourth row is symmetrical.
Row sums are 4^n.
3*k instead of 4*k in the binomial() gives A178618.
EXAMPLE
1;
1, 3;
1, 12, 3;
1, 31, 31, 1;
1, 65, 155, 35;
1, 120, 546, 336, 21;
1, 203, 1554, 1918, 413, 7;
1, 322, 3823, 8092, 3823, 322, 1;
1, 486, 8451, 27876, 23607, 4950, 165;
1, 705, 17205, 82885, 112035, 44803, 4455, 55;
1, 990, 32802, 220198, 440484, 291258, 59950, 2882, 11;
MAPLE
A178619 := proc(n, k)
(1-x)^(n+1)*add( binomial(n+4*j, 4*j)*x^j, j=0..n+1) ;
coeftayl(%, x=0, k) ;
end proc:
seq(seq(A178619(n, k), k=0..n), n=0..8) ; # R. J. Mathar, Nov 05 2012
MATHEMATICA
p[x_, n_] = (-1)^(n + 1)*(-1 + x)^(n + 1)*Sum[Binomial[n + 4*k, 4*k]*x^k, {k, 0, Infinity}]
Flatten[Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}]]
CROSSREFS
Sequence in context: A337205 A287197 A118020 * A124572 A144880 A144881
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, May 30 2010
STATUS
approved