login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360894
G.f. satisfies A(x) = 1 + x * A(x * (1 - x)).
4
1, 1, 1, 0, -2, -1, 7, 0, -44, 69, 276, -1471, 675, 20407, -90560, -20552, 2141700, -10558223, -675239, 329376824, -2106253225, 2364924062, 67114942438, -621638176430, 1926931098484, 14768396756732, -236623058229675, 1371752460097440, 1098671590491324
OFFSET
0,5
FORMULA
a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/2)} (-1)^k * binomial(n-1-k,k) * a(n-1-k).
PROG
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, (i-1)\2, (-1)^j*binomial(i-1-j, j)*v[i-j])); v;
CROSSREFS
Cf. A127782.
Sequence in context: A063704 A224918 A224508 * A116891 A079620 A010254
KEYWORD
sign
AUTHOR
Seiichi Manyama, Feb 25 2023
STATUS
approved