login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360896
G.f. satisfies A(x) = 1 + x * A(x * (1 - x^2)).
4
1, 1, 1, 1, 0, -2, -5, -4, 9, 39, 46, -101, -516, -624, 2021, 9704, 8847, -58363, -230932, -65902, 2085381, 6301393, -5195375, -84748630, -174659303, 535875052, 3703162955, 3578704451, -39485091237, -163826467050, 88095454403, 2675998434838, 6571312338031
OFFSET
0,6
LINKS
FORMULA
a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/3)} (-1)^k * binomial(n-1-2*k,k) * a(n-1-2*k).
PROG
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, (i-1)\3, (-1)^j*binomial(i-1-2*j, j)*v[i-2*j])); v;
CROSSREFS
Cf. A360885.
Sequence in context: A296208 A324142 A339809 * A375888 A084432 A071297
KEYWORD
sign
AUTHOR
Seiichi Manyama, Feb 25 2023
STATUS
approved