login
A084432
Expansion of 2/(1-x) + Sum_{k>=0} t^2(3-t)/(1+t)/(1-t)^2, where t=x^2^k.
3
2, 5, 4, 10, 6, 11, 8, 19, 10, 17, 12, 24, 14, 23, 16, 36, 18, 29, 20, 38, 22, 35, 24, 49, 26, 41, 28, 52, 30, 47, 32, 69, 34, 53, 36, 66, 38, 59, 40, 79, 42, 65, 44, 80, 46, 71, 48, 98, 50, 77, 52, 94, 54, 83, 56, 109, 58, 89, 60, 108, 62, 95, 64, 134, 66, 101, 68, 122, 70, 107, 72, 139, 74, 113
OFFSET
1,1
LINKS
FORMULA
a(1)=2, a(2*n) = a(n)+2*n+1, a(2*n+1) = 2*n+2.
Dirichlet g.f.: 2^s/(2^s-1) * (zeta(s)+zeta(s-1)). - Ralf Stephan, Jun 17 2007
From Seiichi Manyama, May 27 2024: (Start)
G.f. A(x) satisfies A(x) = 1/(1 - x)^2 - 1 + A(x^2).
G.f.: A(x) = Sum_{k>=0} (1/(1 - x^(2^k))^2 - 1). (End)
Conjecture: a(n) is the number of integer solutions (x,y,z) to the Diophantine equation 2^x*(y+z) = n, where 0 <= x,y,z <= n. - Joseph M. Shunia, Aug 27 2024
Sum_{k=1..n} a(k) ~ 2*n^2/3 + 2*n. - Vaclav Kotesovec, Aug 28 2024
PROG
(PARI) for(n=1, 100, l=ceil(log(n)/log(2)); t=polcoeff(sum(k=0, l, 1/(1-x^2^k)^2) + O(x^(n+1)), n); print1(t", "))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ralf Stephan, Jun 27 2003
STATUS
approved