login
A084435
a(1) = 2, then smallest prime of the form 2^k*a(n-1) + 1.
3
2, 3, 7, 29, 59, 1889, 3779, 7559, 4058207223809, 32465657790473, 4462046030502692971872257, 9582170887127842377060195852353537
OFFSET
1,1
COMMENTS
This sequence also is generated when the initial term is 1. It is unclear if the sequence is finite or infinite. - Bob Selcoe, Oct 09 2015
REFERENCES
Donald E. Knuth, The Art of Computer Programming, Vol. 2, Seminumerical Algorithms, problem 39, page 76.
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 1..15 (shortened by N. J. A. Sloane, Jan 13 2019)
EXAMPLE
a(3)=7 because 3*2+1=7 is prime;
a(4)=29 because 7*2+1=15 is not prime, 7*4+1=29 is prime.
MATHEMATICA
f[s_List] := Block[{k = 0, p = s[[-1]]}, While[q = 2^k*p + 1; !PrimeQ[ q], k++]; Append[s, q]]; s = {2}; Nest[f, s, 16] (* Robert G. Wilson v, Mar 11 2015 *)
PROG
(PARI) lista(nn) = {a = 2; print1(a, ", "); for (n=1, nn, k=0; while (!isprime(2^k*a+1), k++); a = 2^k*a+1; print1(a, ", "); ); } \\ Michel Marcus, Mar 18 2015
CROSSREFS
Sequence in context: A062573 A019435 A061092 * A072469 A004062 A037151
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Jun 03 2003
STATUS
approved