login
A360895
Decimal expansion of exp(exp(-gamma)) where gamma is the Euler-Mascheroni constant A001620.
1
1, 7, 5, 3, 2, 2, 9, 4, 4, 3, 4, 9, 5, 6, 9, 4, 5, 8, 2, 2, 9, 7, 3, 6, 5, 4, 2, 9, 6, 4, 4, 0, 6, 1, 2, 8, 7, 6, 0, 5, 7, 4, 5, 8, 0, 2, 0, 2, 0, 7, 5, 4, 4, 5, 6, 1, 9, 0, 2, 9, 5, 1, 5, 6, 3, 1, 5, 3, 9, 8, 8, 9, 4, 0, 8, 7, 8, 0, 7, 2, 0, 6, 0, 7, 2, 4, 5, 3, 1, 0, 5, 5, 5, 8, 8, 8, 6, 7, 4, 0, 5, 2, 0, 2, 4, 3, 4, 3, 7, 6, 8, 4, 6, 4, 2
OFFSET
1,2
COMMENTS
Theorem: Let p(n) be the smallest prime such that Product_{prime p<=p(n)} 1/(1-1/p) >= n. Then lim_{n->oo} p(n+1)/p(n) = exp(exp(-gamma)).
Proof. Follow Mertens's Third Theorem Product_{p<=x} 1/(1-1/p) ~ log(x)/exp(-gamma).
For any particular integer n, it follows from the equations n = log(x_n)/exp(-gamma) -> x_n = exp(n*exp(-gamma)) and n+1 = log(x_n+1)/exp(-gamma) -> x_n+1 = exp((n+1)*exp(-gamma)) that lim_{n->oo} exp((n+1)*exp(-gamma))/exp((n)*exp(-gamma)) = exp(exp(-gamma)).
Convergence table:
n p(n) truncated Euler product up to p(n) ratio p(n)/p(n-1)
42 17427088769 42.0000000010939727723681242652955 1.7532416978341651
43 30553756811 43.0000000012946363551468233325186 1.7532335558736718
44 53567706007 44.0000000002803554088007272169139 1.7532281329055578
45 93916601047 45.0000000002681963271546340553884 1.7532317145469581
46 164657625967 46.0000000002470257389410099668348 1.7532323799133028
47 288682860119 47.0000000001305074313442036255929 1.7532310357544971
48 506127311983 48.0000000000705764045487316221655 1.7532295189758258
oo oo oo 1.7532294434956945
FORMULA
Equals exp(A080130).
Limit_{n->oo} A091440(n+1)/A091440(n).
Limit_{n->oo} A061556(n+1)/A061556(n).
Limit_{n->oo} A167348(n+1)/A167348(n).
EXAMPLE
1.753229443495694582297365429644...
MATHEMATICA
RealDigits[N[Exp[Exp[-EulerGamma]], 115]][[1]]
PROG
(PARI) exp(exp(-Euler)) \\ Michel Marcus, Feb 25 2023
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
Artur Jasinski, Feb 25 2023
STATUS
approved