login
A360898
G.f. satisfies A(x) = 1 + x/(1 + x^3) * A(x/(1 + x^3)).
4
1, 1, 1, 1, 0, -2, -5, -8, -5, 13, 57, 117, 110, -179, -1089, -2591, -2852, 4370, 30383, 77884, 88638, -165233, -1133248, -2963659, -3172087, 8519500, 53092522, 135857134, 122296383, -543728791, -2983007603, -7219203443, -4427302115, 40439842811, 194091075002
OFFSET
0,6
LINKS
FORMULA
a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/3)} (-1)^k * binomial(n-1-2*k,k) * a(n-1-3*k).
PROG
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, (i-1)\3, (-1)^j*binomial(i-1-2*j, j)*v[i-3*j])); v;
CROSSREFS
Cf. A360890.
Sequence in context: A201772 A196605 A182243 * A118119 A340253 A360809
KEYWORD
sign
AUTHOR
Seiichi Manyama, Feb 25 2023
STATUS
approved