The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A115110 Expansion of q^(-1/24) * eta(q)^3 / eta(q^2) in powers of q. 12
1, -3, 1, 2, 2, -1, -4, 1, -2, 0, 2, 4, -1, 2, -2, -1, 0, -2, -2, -2, 0, 4, 1, 0, 2, -2, 5, 0, -2, 0, 0, -4, -2, 0, 0, -3, 4, 0, 0, -2, 1, 4, 2, 2, 0, 0, 0, -2, -2, 0, 2, -3, -2, 0, -2, 2, -4, 1, 0, 0, 0, 4, 2, 0, 4, 0, -4, 2, 0, 2, -1, 0, 0, 2, -2, -2, -6, -1, 2, 0, 0, -4, 0, 2, 2, 0, 0, 2, -2, 2, 2, 0, 1, 0, 0, 2, 4, 0, 0, -2, 1, -6, 0, -2, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
REFERENCES
B. Gordon and D. Sinor, Multiplicative properties of eta-products, Number theory, Madras 1987, pp. 173-200, Lecture Notes in Math., 1395, Springer, Berlin, 1989; see page 182. MR1019331 (90k:11050)
LINKS
George E. Andrews, The fifth and seventh order mock theta functions, Trans. Amer. Math. Soc., 293 (1986) 113-134; see page 124 (5.15).
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of f(x) * f(-x) in powers of x^2 where f() is a Ramanujan theta function.
Expansion of f(-x) * phi(-x) in powers of x where phi(), f() are Ramanujan theta functions.
Given A = A0 + A1 + A2 + A3 + A4 + A5 + A6 is the 7-section, then 0 = A0*A4 + A1*A3 + A5*A6 + 4*A2^2, A2 = x^2 * A(x^49).
Euler transform of period 2 sequence [ -3, -2,...].
G.f.: Product_{k>0} (1 - x^k)^2 / (1 + x^k).
G.f.: Sum_{k>=0} ( x^((3*k^2 + k)/2) * (1 - x^(2*k + 1)) * Sum_{|j|<=k} (-x)^(-j^2) ).
a(49*n + 2) = a(n). a(7*n + 2) = 0 unless n = 7*k.
a(n) = (-1)^n * A107033(n).
G.f.: exp( Sum_{n>=1} -sigma(2*n)*x^n/n ). - Seiichi Manyama, Mar 02 2017
a(n) = -(1/n)*Sum_{k=1..n} sigma(2*k)*a(n-k). - Seiichi Manyama, Mar 04 2017
From Peter Bala, Jan 01 2021: (Start)
For prime p of the form 4*k + 3, a(n*p^2 + (p^2 - 1)/24) = e*a(n), where e = 1 if p == 7 or 23 (mod 24) and e = -1 if p == 11 or 19 (mod 24).
If n > 0 and p are coprime then a(n*p + (p^2 - 1)/24) = 0. Cf. A002107.
(End)
EXAMPLE
G.f. = 1 - 3*x + x^2 + 2*x^3 + 2*x^4 - x^5 - 4*x^6 + x^7 - 2*x^8 + 2*x^10 + ...
G.f. = q - 3*q^25 + q^49 + 2*q^73 + 2*q^97 - q^121 - 4*q^145 + q^169 - 2*q^193 + ...
MAPLE
prod := n -> mul( (1 - x^k)^2*(1 - x^(2*k-1)), k = 1..n):
a := n -> coeff(prod(100), x, n):
seq(a(n), n = 0..100); # Peter Bala, Jan 01 2021
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x]^3 / QPochhammer[ x^2], {x, 0, n}]; (* Michael Somos, Jul 12 2012 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ x] QPochhammer[ -x], {x, 0, 2 n}]; (* Michael Somos, Jul 12 2012 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ x] EllipticTheta[ 4, 0, x], {x, 0, n}]; (* Michael Somos, Jul 12 2012 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^3 / eta(x^2 + A), n))};
(Magma) m:=120; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1 - x^j)^2 / (1 + x^j): j in [1..m+2]]) )); // G. C. Greubel, Nov 18 2018
(Sage)
R = PowerSeriesRing(ZZ, 'x')
x = R.gen().O(120)
s = prod((1 - x^j)^2 / (1 + x^j) for j in (1..120))
s.coefficients() # G. C. Greubel, Nov 18 2018
CROSSREFS
Cf. Product_{n>=1} (1 - q^n)^(k+1)/(1 - q^(k*n)): A010815 (k=1), this sequence (k=2), A185654 (k=3), A282937 (k=5), A282942 (k=7).
Sequence in context: A111951 A222593 A107033 * A066635 A016568 A327314
KEYWORD
sign,easy
AUTHOR
Michael Somos, Mar 07 2006
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 23 16:36 EDT 2024. Contains 372765 sequences. (Running on oeis4.)