login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115112
Number of different ways to select n elements from two sets of n elements under the precondition of choosing at least one element from each set.
7
0, 4, 18, 68, 250, 922, 3430, 12868, 48618, 184754, 705430, 2704154, 10400598, 40116598, 155117518, 601080388, 2333606218, 9075135298, 35345263798, 137846528818, 538257874438, 2104098963718, 8233430727598, 32247603683098
OFFSET
1,2
COMMENTS
Also number of lattice paths from (0,0) to (n,n) that use steps (1,0) and (0,1) and do not include (n,0) or (0,n). - Ran Pan, Apr 10 2015
LINKS
Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
Gejza Jenca and Peter Sarkoci, Linear extensions and order-preserving poset partitions, arXiv:1112.5782 [math.CO], 2011-2015. - From N. J. A. Sloane, Apr 08 2012
Ran Pan, Exercise K, Project P.
FORMULA
a(n) = binomial(2*n, n) - 2 = A000984(n) - 2; also, a(n) = Sum_{i, j = 1...(n-1), i+j = n} binomial(n, i)*binomial(n, j).
Recurrence: n*(3*n - 5)*a(n) = (15*n^2 - 31*n + 12)*a(n-1) - 2*(2*n - 3)*(3*n - 2)*a(n-2). - Vaclav Kotesovec, Oct 19 2012
a(n) ~ 4^n/sqrt(Pi*n). - Vaclav Kotesovec, Oct 19 2012
E.g.f.: exp(2*x) * BesselI(0,2*x) - 2*exp(x) + 1. - Ilya Gutkovskiy, Mar 04 2021
EXAMPLE
a(5) = binomial(10,5) - 2 = 250.
MAPLE
seq(sum((binomial(n, m))^2, m=1..n-1), n=1..24); # Zerinvary Lajos, Jun 19 2008
MATHEMATICA
Table[Sum[Binomial[n, i] Binomial[n, n - i], {i, 1, n - 1}], {n, 1, 10}]
PROG
(Magma) [Binomial(2*n, n)-2: n in [1..25]]; // Vincenzo Librandi, Apr 10 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Hieronymus Fischer, Jan 22 2006
STATUS
approved