login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376072
a(n) are half the sums of the gamma coefficients of the n-th row-generating function of triangle A375853.
1
1, 4, 18, 68, 251, 888, 3076, 10456, 35061, 116252, 381974, 1245564, 4035631, 13003696, 41701512, 133175792, 423741161, 1343864820, 4249518490, 13402327540, 42168298851, 132388845224, 414818381708, 1297410683208, 4051098663901, 12629895834508, 39319487031966, 122247859681196
OFFSET
2,2
LINKS
Ming-Jian Ding and Jiang Zeng, Some new results on minuscule polynomial of type A, arXiv:2308.16782, [math.CO], 2023.
FORMULA
a(n) = 2^(n-1)*T_n((-1 + sqrt(3)*i)/2)/(1 + sqrt(3)*i)^n, where T_n(x) is the generating function of the n-th row of A375853.
a(n) = a(n - 1) + n*(3^(n-1) + (-1)^n)/8, a(2) = 1.
a(n) = ((2*n - 2)*a(n - 1) + 3*n*a(n - 2))/(n - 2), a(2) = 1, a(3) = 4.
a(n) = ((2*n - 1)*3^n + (2*n + 1)*(-1)^n)/32.
G.f.: x^2/(1 - 2*x - 3*x^2)^2.
E.g.f.: exp(x)*(2*x*cosh(2*x) - (1 - 4*x)*sinh(2*x))/16. - Stefano Spezia, Sep 23 2024
EXAMPLE
For n = 4, the row-generating function of triangle A375853(n, k) is 20*x + 56*x^2 + 20*x^3. Thus the corresponding gamma polynomial is 20*x + 16*x^2, and so a(4) = 18.
MAPLE
a := n -> (3^n*(2*n - 1) + (-1)^n*(2*n + 1))/32:
seq(a(n), n = 2..19); # Peter Luschny, Sep 23 2024
MATHEMATICA
LinearRecurrence[{4, 2, -12, -9}, {1, 4, 18, 68}, 30]
CROSSREFS
Cf. A375853.
Sequence in context: A246134 A115112 A171074 * A005367 A050184 A263582
KEYWORD
nonn,easy
AUTHOR
Mingjian Ding, Sep 08 2024
STATUS
approved